首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过实验,获得了制备性能优异的耐深冲聚酯树脂的工艺条件。将该树脂与苯代氨基树脂、钛白粉以颜基比0.7:1进行配制,经研磨机研磨后,加入溶剂,可得到综合性能优良的耐深冲聚酯涂料。  相似文献   

2.
新型阳离子复鞣剂PAED的合成研究   总被引:1,自引:0,他引:1  
以双氰胺和甲醛为原料,制得具有良好稳定性、水溶性的氨基树脂预聚体;以二乙烯三胺、己二酸、环氧氯丙烷为原料,合成聚酰胺多胺(PAE),再把两种树脂共聚,制备出一种稳定性好.具有鞣性、助染性、保毛性的新型毛皮鞣剂。讨论了PAE用量,反应时间,反应温度等因素对合成反应的影响,通过化学分析、红外光谱等手段对产物进行了表征。  相似文献   

3.
以丁二酸、己二酸和丁二醇为原料合成可生物降解的共聚酯,用此共聚酯制备了微包囊和多孔膜,并用粘度计、红外光谱仪和电子显微镜等仪器对共聚物进行了测试表征.研究表明,工艺条件以共聚酯浓度为0.5g/dL、聚合物与胰岛素的重量比为1∶2、室温下超声时间为4~5小时为宜.  相似文献   

4.
目的:优化甲硝唑-β-环糊精包合物的制备工艺,并探索其对提高甲硝唑水溶性、化学稳定性等方面的影响.方法:用饱和水溶液法制备包合物,以包合物的包合率作为评价指标,采用响应面设计法对其包合工艺进行优化以确定最佳制备工艺.结果:最佳制备工艺为:包合温度49℃,包合时间1.85 h,β-环糊精-甲硝唑摩尔比1.4:1,包合物的包合率为72.54%.结论:通过响应面法优化制得的甲硝唑-β-环糊精包合物,物理化学性质较为稳定,能够明显提高甲硝唑的水溶性,选用的模型合理有效.  相似文献   

5.
制备大豆卵磷脂/兰纳素CE微胶囊,并对其包封率进行优化分析,确定微胶囊的最佳制备工艺。选用大豆卵磷脂作为壁材,并加入适量的胆固醇来增加壁材的稳定性。采用逆向蒸发法,将活性染料兰纳素CE进行包封,制备成微胶囊。以包封率作为评价指标,通过单因素分析以及Box-Behnken Design响应面优化法(BBD-RSM)筛选出微胶囊的最佳制备工艺条件,并对制备出的微胶囊进行TEM表征以及染色性能测试。结果表明:微胶囊的最佳制备工艺条件为20 mL乙醚,大豆卵磷脂/胆固醇质量比为3. 11∶1,壁材/芯材质量比为26. 3∶1,水合时PBS缓冲液用量为4. 7 mL,所制备的微胶囊的平均包封率为67. 64%,且具有一定的染色性能。  相似文献   

6.
乳酸薄荷酯的制备工艺研究   总被引:1,自引:0,他引:1  
对乳酸薄荷酯制备工艺进行了研究,考察了物料用量、催化荆用量、反应温度、反应时间和精制方法对产品的影响,获得了最佳工艺条件:醇酸物质的量的比为1.2,催化剂用量为原料总量的3%,反应温度为90%,反应时间为3h,精制方法为短程蒸馏。在最佳工艺条件下产率可达70%以上,产品香气纯正。  相似文献   

7.
以香蕉茎纤维和丙烯酰胺为原料,过硫酸钾和亚硫酸钠为引发剂,制备了香蕉茎纤维-丙烯酰胺高吸水树脂.在单因素实验的基础上,以树脂吸水率为响应值,选取酰纤比、反应温度、引发剂用量和交联剂用量为自变量,利用Box-Behnken设计和响应面法对各自变量及其交互作用对树脂吸水率的影响进行了研究,得到了二次多项式回归方程模型.香蕉茎纤维-丙烯酰胺高吸水树脂的最佳制备工艺条件为:酰纤比9.9 g/g、反应温度48℃、引发剂用量1.9%和交联剂用量0.18%.在此条件下,测得所制备的吸水树脂吸水率为461.22 g/g,与预测值相对误差为0.68%,说明响应面优化香蕉茎纤维-丙烯酰胺高吸水树脂的制备工艺具有较高的准确性与可靠性,该方法可用于香蕉茎纤维-丙烯酰胺高吸水树脂制备工艺的优化.  相似文献   

8.
以苯酐和2-乙基己醇为原料,在自制的TiO_2/Al_2O_3复合型催化剂上合成邻苯二甲酸二异辛酯;确定了反应中催化剂的最佳配比及催化剂制备温度。考察了原料配比、催化剂用量、反应温度等工艺条件对酯化反应的影响。结果表明,该催化剂体系具有较好的催化活性,合成的DOP产品色相较好。  相似文献   

9.
聚酯/TGIC粉末涂料是铝型材涂装用的主要粉末品种,文章详细试验、讨论了聚酯树脂、钛白粉、固化剂填料等原材料对涂膜耐侯性的影响,为铝型材粉末涂料的配方设计提供了依据。  相似文献   

10.
多元醇和多元酸发生缩和反应生成聚酯,聚酯溶解于苯乙烯制成不饱和聚酯树脂。缩聚反应进行的程度对不饱和聚酯树脂的气干性能有很大影响。生产过程中,通过优化控制反应终点酸值,优化设计醇、酸比例,可制得气干性能优良的不饱和聚酯树脂。  相似文献   

11.
本实验以价格低廉的木质素和浓硫酸为原料,首次合成木质素磺酸催化剂,用高酸度油脂与甲醇在此催化剂作用下发生酯交换反应制备脂肪酸甲酯.实验主要考察甲醇用量、催化剂用量、反应温度和反应时间等因素对酯交换反应的影响,通过正交实验分析得出脂肪酸甲酯的最佳制备工艺条件为:甲醇用量20%,反应温度95℃,催化剂用量2.5%,硫酸用量2.0%,反应时间为9h.该条件下反应转化率可达94.33%.  相似文献   

12.
以间苯二甲酸二甲酯-5-磺酸钠(SIPM)和乙二醇(EG)为原料,在一定的温度和催化剂条件下进行酯交换反应制备常用聚酯染色改性剂间苯二甲酸双羟乙酯-5-磺酸钠(SIPE)。用高效液相色谱(HPLC)法测定转化率,系统研究了反应温度,时间,催化剂类型及用量,物料的摩尔配比等因素对SIPE转化率的影响。实验结果表明,获得较高SIPE转化率的最佳工艺条件为:EG/SIPM摩尔比为10.6,0.4%的Zn(Ac)2做催化剂,175℃,反应2h。  相似文献   

13.
讨论了对以淀粉、磷酸、蜜胺为原料合成淀粉磷酸酯蜜胺盐的方法和产品性能。采用正交试验设计法对合成工艺条件进行优化,采用热重分析法、加热膨胀法和红外光谱法对产品的性能和结构进行了表征。淀粉磷酸酯的最佳反应条件为:反应温度100℃,反应时间4小时,磷酸为淀粉用量的75%;淀粉磷酸酯蜜胺盐的最佳反应条件为:反应温度110℃,反应时间2小时,磷酸与蜜胺的摩尔比为1∶1.1。在最佳反应条件下,淀粉磷酸酯蜜胺盐的收率为51.3%。产物在398.5℃开始明显分解,温度升高到567.5℃时,失重为73.8%,膨胀率为119.4cm3/g。结果表明,目的产物具有良好的热稳定性和膨胀性。  相似文献   

14.
以丙烯酰胺(AM)和二甲基二烯丙基氯化铵(DMDAAC)为原料,在紫外灯照射和光引发剂作用下,通过水溶液自由基共聚法合成了水溶性好的阳离子型聚丙烯酰胺。研究了光引发剂用量、单体配比、pH值以及单体总浓度等对产物性能的影响规律,并通过对合成产物固含量、特性粘数、阳离子度等性能指标的测试,确定了本聚合反应体系的最佳工艺条件。用红外光谱和核磁共振氢谱对共聚物进行了结构表征。  相似文献   

15.
多元醇和多元酸发生缩和反应生成聚酯,聚酯溶解于苯乙烯制成不饱和聚酯树脂。缩聚反应进行的程度对不饱和聚酯树脂的气干性能有很大影响。生产过程中,通过优化控制反应终点酸值,优化设计醇、酸比例,可制得气干性能优良的不饱和聚酯树脂。  相似文献   

16.
讨论了以乙炔和乙腈为原料合成2-甲基吡啶的方法。采用正交试验设计确定了最佳工艺条件。最佳工艺条件为:反应温度为180℃,乙炔压力为1.2M Pa ,反应时间为16h ,催化剂用量为200mg。实验结果表明,在最佳工艺条件下,催化剂和被分离出2-甲基吡啶的溶液可以在合成过程中循环使用。2-甲基吡啶的平均产率为77%,经分离得到的2-甲基吡啶的含量≥99.5%。  相似文献   

17.
苹果酯合成工艺研究   总被引:8,自引:0,他引:8  
研究了合成苹果酯的催化剂固体酸SnCl4/C、固体超强酸SO4^2-/Fe2O3、SO4^2-/TiO2/La^3 、离子交换树脂的催化效能。从中筛选出最佳催化剂-固体超强酸SO4^2-/TiO2/La^3 。使用该催化剂进行苹果酯合成的最佳工艺条件为:当乙酰乙酸乙酯和乙二醇的用量分别为0.1和0.2mol时,催化剂用量为2g,带水剂苯的用量为15mL,反应时间为2h,酯化产率达到了84.7%。  相似文献   

18.
正交设计法研究催化氧化环己醇合成己二酸的影响因素   总被引:1,自引:0,他引:1  
为了寻求一种清洁的合成己二酸的方法,以30%(质量分数)的过氧化氢为氧化剂,磺基水杨酸为配体,Na2WO4·2H2O催化氧化环己醇制备己二酸.利用正交试验的方法对影响己二酸合成工艺的主要因素:催化剂用量、催化剂/配体(moleratio)和反应时间进行了优化.同时对各因素对己二酸的产率的影响进行了分析,得出了一组最佳的合成己二酸的反应条件:环己醇/催化剂为40(moleratio),Na2WO4·2H2O/磺基水杨酸的摩尔比为0 925,反应时间为8 5h时反应效果最好.  相似文献   

19.
利用脂肪酶水解生活污油制备脂肪酸,考察了单因素影响脂肪酶水解生活污油水解率的因素,并通过正交试验设计对脂肪酶水解生活污油的工艺条件进行优化,确定了最佳酶催化水解条件是:酶用量0.1 mL、pH为7、反应温度50℃、油水质量比1:2.5、水解时间9 h、摇床速度140 r/min。且在最佳条件下,脂肪酶水解生活污油的水解率为70.98%。  相似文献   

20.
探讨了采用半干法制备阳离子罗望子多糖的工艺条件,并利用核磁共振氢谱和红外光谱对其结构进行确认。结果表明:在固定酒精浓度为80%,罗望子多糖用量为25g时,阳离子罗望子多糖的最佳制备工艺条件为:阳离子化试剂用量为21g,氢氧化钠用量为5g,反应时间为8h,反应温度为80℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号