首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
数学题集锦     
设△ABC中顶点A、B、C所对的三边是a、b、c,同一平面上另有两点P_1、P_2,令 AP=a_1,BP_1=b_1,CP_=C_1,AP_2=a_2,BP_2=b_2,CP_2=C_2,求证: aa_1a_2+bb_1b_2+cc_1c_2≥abc。中国科技大学杨路老师在1979年第一期的《中学数学教学》里对这一题给予了复数证法,现用三角形面积来证明它。证明:以BC为转轴,将△BP_1C翻转180°得对称△BDC,同法得△BFA、△AEC。连P_2D、P_2E、P_2F,则由三角形面积公式 S=1/2ab sin C可得: S_(△A2)=1/2AF·AP_2sin∠FAP_2  相似文献   

2.
三对对棱都相等的四面体称为等腰四面体。等腰四面体具有一些特殊性质。在等腰四面体ABCD中,设BC=AD=a,AC=BD=b,AB=CD=c,且令P=(1/2)(a+b+c),k~2=(1/2)(a~2+b~2+c~2),l=ab+bc+ca,n=abc。以BC、BD、CD为棱的侧面间的二面角是α、β、γ,△BCD、△ABC、△ABD、△ACD的面积依次是S、S_1、S_2、S_3,四面体的体积为V,外接球半径为R,内切球半径为r,等腰四面体ABCD性质可以列举如下:  相似文献   

3.
我们将三双对棱相等的四面体称为等面四面体。本文给出等面四面体的九个充要条件。先约定:四面体A_1A_2A_3A_4中,棱长A_iA_j之长为a_(ij)(i,j=1,2,3,4,且i相似文献   

4.
正弦定理的推广   总被引:1,自引:0,他引:1  
类比推理是一种重要的推理方法。 [例1] 在ΔABC中,三边所对的角分别为A、B、C,则有正弦定理 a/sinA=b/sinB=c/sinC.证明根据ΔABC的面积得1/2 bcsinA=1/2 casinB=1/2 absinC,同除以1/2 abc得将四面体与三角形加以类比。以三角形的边与四面体的面,三角形内角与四面体各面两两所成的二面角的平面角类比,可以得到揭示四面体中各面及棱与相应二面角的平面角的正弦问关系的结论,其数学表达式与正弦理极为相似,证明从四面体的体积入手。  相似文献   

5.
四面体是三角形在空间的推广 ,因此三角形的许多性质可以推广到四面体上去 .本文以向量为工具 ,把三角形的余弦定理、勾股定理以及“在直角三角形中 ,30°的角所对的边是斜边的一半”等 4个定理推广到四面体上 .定理 1  (四面体的余弦定理 )四面体C-AOB中 ,若CO垂直于平面AOB ,平面AOC与平面BOC所成的二面角为α ,则四面体的四个面的面积之间有如下关系 :S2△ABC =S2△AOC S2△BOC S2△AOB -2S△AOC·S△BOCcosα证 以O为原点、OA为x轴 ,OC为z轴建立空间直角坐标系 ,设四个顶点的坐标分析为A(a ,0 ,0 ) ,B(b ,d ,0 )…  相似文献   

6.
记四面体OABC各顶点所对面的面积分别为△_o,△_a,△_b,△_c,外接圆半径为R_o,R_a,R_b,R_c,以BC记棱为BC的二面角,等等。我们有四面体的正弦定理在四面体OABC中,有  相似文献   

7.
平面几何中,有一个叫做海伦——秦九韶的三角形面积公式 S_△=(p(p-a)(p-b)(p-c))~(1/2), 其中a、b、c是三角形三边的长,p是周长的一半。有趣的是,在立体几何中,也有一个与之相类似的四面体体积公式 V四面体=1/3abc··(sinωsin(ω-α)sin(ω-β)sin(ω-γ))~(1/2),①其中a、b、c是共顶点的三条棱的长,α、β、γ是相邻棱组成的面角,ω是这三个面角和的一半。公式①的证明: 设四面体M—ABC中,MA=a,MB=b,MC=c,∠AMB=α,∠BMC=β,∠CMA=γ。作BO⊥平面MAC,垂足为O。作OA′⊥MA,垂足为A′。作OC′⊥MC,垂足为C′。连结BA′、BC′,则BA′⊥MA,  相似文献   

8.
如图一,三棱锥P—ABC中,已知PA⊥BC,PA=BC=l,PA、BC 的公垂线ED=h,求证三棱锥P—ABC的体积V=1/6l~2h。这是1987年理科数学高考题第四题,该题可推广如下: 定理如果四面体P—ABC中,PA、BC的长为a、b,PA与BC两异面直线间的距离为h,且PA与BC所成角为θ,那么,该四面体的体积为 V=1/6abhsinθ证明,如图二,以P为顶点作四棱  相似文献   

9.
一个几何不等式的证明   总被引:1,自引:0,他引:1  
题目:设a、b、c表示△ABC中∠A、∠B、∠C所对的边长,形内任意两点P_1、P_2到A、B、C三个顶点的距离分别为a_1、a_2,b_1、b_2,C_1、C_2.求证:  相似文献   

10.
补体法就是将原已知几何体进行修补,使它成为熟悉的几何体,如正方体、长方体、平行六面体、锥体、台体、球体等等,再利用新图形特有的性质,探求解题途径的思想方法.本文例谈补体法在解立体几何问题中的应用. 一、求距离例1 若一个四面体相对棱长相等,其长分别为a、b、c,试求相对棱间的距离. 解:根据题意,将原四面体补成长方体如图1,则长方体相对面间的距离即为四面体ABCD相对棱间的距离,设AB=CD=a,AC=BD=b,AD=BC=c,长方体  相似文献   

11.
<正>一、射影在求解立体几何问题时,若能紧紧抓住"线"在"面"内的射影,则可顺利求解线面角;若能抓住"面"在"面"内的射影,则可使求解无棱二面角的问题变得简单容易.例1如图1,已知等腰三角形ABC中,AB=BC=2,∠ABC=120°,ABC所在平面外一点P到三角形顶点的距离都等于4,求直线PB与平面ABC所成的角.  相似文献   

12.
向量中有重要不等式|a|·|b|≥|a·b|,如果我们把a和b都看成n维向量,它们的坐标表示是a=(a_1,a_2,…,a_n),b=(b_1,b_2,…,b_n),定义向量a、b的数量积a·b=a_1b_1 a_2b_2 … a_nb_n,|a|=(a_1~2 a_2~2 … a_n~2)~(1/2),|b|=(b_1~2 b_2~2 … b_n~2)~(1/2).下面谈谈利用|a|·|b|≥|a·b|来解决等式条件下的最值问题.  相似文献   

13.
球面三角公式是天文学、大地测量学的基础,不失为数学知识库中的珍品。本文试图介绍球面三角余弦公式及其在中学立体几何中的一些应用。 1.球面三角形的基本概念把球面上不在同一个大圆上的三个点用三段大圆弧(劣弧)连结起来,所围成的图形叫做球面三角形(如图1)。这三点称为球面三角形的顶点。这三段大圆弧,用所含的度数来表示,叫做球面三角形的边,记作a、b、c,它等于所对的中心角(如a=(?)(?)∠BOC)。从顶点作两段大圆弧的切线,所夹的角称为球面三角形的角,记作A、B、C。不难理解,球面三角形的角即为夹此角的两段大圆弧所在平面构成的二面角(如A即为二面角B-AO-C)。  相似文献   

14.
我们知道,三角形的面积可用它的顶点坐标的行列式表示:设△ABC三个顶点坐标为A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),则三角形面积为: 由于三角形的边长也可以用它的顶点坐标不表示,BC=a,AC=b,AB=c,有  相似文献   

15.
第十届国际奥林匹克数学竞赛有这样一道试题: 证明:任意一个四面体总有一个顶点,由这个顶点出发的三条棱可以构成一个三角形的三边。我们利用反证法来证明这个命题。设四面体ABCD中AB是最长的棱。如果任意一个顶点出发的三条棱都不能构成一个三角形,则对由A出发的三条棱,有AB≥AC±AD;又对由B出发的三条棱,有BA≥BC BD,两式相加得2AB≥AC AD BC BD (1)但在△ABC中,AB相似文献   

16.
在二维平面上,设△ABC的三边分别为a、b、c,面积为S,则有不等式 abc≥(8/3)(?)3S~(8/2);①其中等号当且仅当△ABC为正三角形时成立。对于三维空间的四面体,我们有: 设四面体A_1A_2A_3A_4的6条棱长分别为a_1(i=1,2,…,6),体积为V,则有不等式  相似文献   

17.
立体几何中求两条异面直线的距离和求两个平面的二面角的问题往往是比较困难的.这里介绍两个定理,可作为解以下两道立体几何问题的依据.定理1.两条异面直线 a、b 的距离,就是 a 到过 b 而平行于 a 的平面的距离.定理2.两个平面间的二面角的平面角与两平面的垂线所成的角相等或互补.这两定理的证明不难,请读者自证.一、下面首先介绍求两条异面直线距离的三种方法.已知:三棱锥 S-ABC,底面是边长为4 2~(1/2)的正三角形,棱 SC 的长为2,且垂直于底面,E、D 分别为 BC、AB 的中点.  相似文献   

18.
如图,AB 和 CD 是四面体 ABCD 的一双对棱。为叙述方便,我们约定:棱 AB 所在的二面角的平面角为θ1,∠ACB=α_1,∠ADB=3_1;棱 CD 所在的二面角的平面角为θ_2,∠CAD=α_2,∠CBD=β_2。在四面体 ABCD 中,如上所述的八个元素(两条棱、六个角)之间存在着十分密切的联系。本文揭示出其中的两个关系式,并简单介绍它们在解题中的实际应用。定理一四面体 ABCD 中,AB/(sinθ_1 sinα_1 sinβ_1)=CD/(sinθ_2 sinα_2 sinβ_2)。证明:如图,过四面体 ABCD 的顶点  相似文献   

19.
每期一题     
题:如图,△PQR和△P’Q’R’是两个全等的正三角形。六边形ABCDEF的边长分别记为: AB=a_1,BC=b_1,CD=a_2,DE=b_2,EF=a_3,FA=b_3。  相似文献   

20.
读了《中学数学教学》1982年第4期李梦樵老师的关于“已知四面体各棱的长求它的体积的方法”一文(以下简称《方法》),受益颇深。文章指出,四面体P-ABC的棱PA、PB、PC的长分别为l、m、n,而BC、CA、AB的长分别a、b、c,在PA、PB、PC上分别取D、E、F三点,使PD=PE=PF=1又假定DE=f,EF=d,FD=e,R为△DEF外接圆半径,则四面体P-ABC的体积  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号