首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
在数学解题中经常碰到有关恒成立问题 ,解决这类问题的方法尽管很多 ,但都离不开一些基本的数学思想 ,如化归思想、函数思想、方程思想等等 .笔者在平时的教学过程中对这类问题的解法作了一点归纳 ,供大家参考 .一、利用一次函数的性质对于一次函数 f(x) =kx +b,x∈ [m ,n] ,有f(x) >0恒成立 f(m) >0 ,f(n) >0 ;f(x) <0恒成立 f(m) <0 ,f(n) <0 .例 1  |p| <2 ,p∈R ,欲使不等式(log2 x) 2 +(p-2 )log2 x+1-p >0恒成立 ,求x的取值范围 .分析 若直接解关于log2 x的不等式 ,再由 p的取值范围求出x的取值范围 ,不仅化简过程十分繁杂 ,而…  相似文献   

2.
不等式恒成立问题涉及面广,逻辑性强,许多同学对此类问题常常感到无从下手,下面举例分析,希望对同学们能够有所启迪. 1 利用一次函数的保号性 对于一次函数f(x)=kx+b,若f(m)>0,f(n)>0,则当x∈[m,n]时,f(x)>0. 例1 已知当1≤m≤2时,不等式(log2m-1)(log3x)2-61og2m·log3x+log2m+1>0恒成立,求x的取值范围. 解析 按常规思路,应将不等式视为关于log3x的二次函数1,这将难以求解.如果换一个思路,把log2m看作主元,log3x看作常量,则求解变得简单容易.  相似文献   

3.
构造函数解题需要较强的创新意识,是高考改革的方向,本文愿就此抛砖引玉.一、构造一次函数y=kx+b(k≠0) 例1 设a,b,c∈(-1,1),求证:ab+bc+ca>-1. 解析作辅助函数f(x)=(b+c)x+bc+1.因为f(1)=(b+1)(c+1)>0,f(-1)=(1-b)(1-c)>0,所以在(-1,1)上恒有f(x)>0.又-10,即原不等式成立.例2 设不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m恒成立,求x  相似文献   

4.
常量与变量是数学的两个重要概念.在不同的问题中,同一个字母可能是常量,也可能是变量,具有相对性.在解题时常常被忽视或对其认识不足.现举几例,供同学们借鉴. 例1 若不等式2x-1>m(x2-1)对满足-2≤m≤2的所有m都成立,求x的取值范围. 解:原不等式化为(x2-1)m-(2x-1)<0,记f(m)=(x2-1)m-(2x-1)(-2≤m≤2).根据题意知,要使不等式成立,只要f(-2)<0且f(2)<0,即2x2+2x-3>0且 2x2-2x-1<0.解之,x的取值范围是(-1+7~(1/7))/2相似文献   

5.
王魁兴 《中学数学月刊》2006,(4):46-47,49,F0004
一、选择题1.设函数f(x)=x3(x∈R),当0≤θ≤π2时,f(m sin)θ+f(1-m)>0恒成立,则实数m的取值范围是().(A)(0,1)(B)(-∞,0)(C)(-∞,1)(D)(-∞,12)2.函数f(x)=ax+b(a>0且a≠1)的图象过点(1,1),且00,x2>0且x1≠x2),则p,q的大小关系是().(A)p>q(B)p相似文献   

6.
给定区间上函数恒成立问题的基本题型是:当m∈M时,F(m,n)>0(或<0或=0)恒成立,求n的取值范围.1利用一次函数的性质一次函数f(x)=ax+b(a≠0),根据一次函数性质,在[m,n]内恒有f(x)>0,等价于f(m)>0且f(n)>0;在[m,n]内恒有f(x)<0,等价于f(m)<0且f(n)<0.例1已知a∈[0,1]时,(a?1)log32x?6a log3x+a+1恒为正数,求实数x的取值范围.分析令2h(a)=(a?1)log3x?6a log3x+a+122=(log3x?6log3x+1)a?log3x+1.当a∈[0,1]时,h(a)>0恒成立,即233(0)0,log10,(1)0,6log20,h xh x???>>???????++>>∴?1相似文献   

7.
<正> 一、a0=1中a≠0 例 1 当m=_____时,函数y=(m+3)x2m+1+4x-5(x≠0)是一个一次函数. 错解当2m+1=1时,函数为一次函数,解得m=0; 当m+3=0时,函数为一次函数,解得m=-3.  相似文献   

8.
构造法解题在近年高考、竞赛中时有出现常见的有构造函数、构造不等式、构造数列、构造几何图形等,本文将通过具体题目来说明. 一、构造函数 例 1 设f(x)=x3-6x2+9x-14,f(m)=1,f(n)=-1,求m+n的值。 解:f(x)=(x-2)3+3(x-2),∴(m-2)3+3(m-2)=1①(n-2)3+3(n-2)=-1②设F(x)=x3+3x易知F(x)=x3+3x是单调递增的奇函数,∴F(m-2)=-F(n-2)=F(2-n)∴m-2=2-n,∴m+n=4.  相似文献   

9.
一、选择题1.设在[0,1]上函数f(x)的图像是连续的,且f′(x)>0,则下列关系一定成立的是().A.f(0)>0B.f(1)>0C.f(1)>f(0)D.f(1)相似文献   

10.
一、判别式法对于二次函数f(x)=ax2+bx+c(a≠0),若f(x)≥0恒成立,则{a>0,Δ≤0;若f(x)≤0恒成立,则{a<0,Δ≤0.例1奇函数f(x)是R上的减函数,若对任意x∈R,有f(kx)+f(-x2+x-2)>0恒成立,求k的取值范围.解析由已知得:  相似文献   

11.
我们都知道函数y=xk(k≠0)的值域为{y|y≠0},函数y=x+xk(k>0)的值域为y∈(-∞,-2k]∪[2k,+∞),借这两种函数原型,可用“分子常数化”来解决分式函数的值域问题.以下举例说明它的用法:例1已知f(x)=54xx+-31(x∈R,x≠35),求f(x)的值域.解因为f(x)=54xx-+31=45(5x-3)+1575x-3=45+5x157-3,又因为51×5x17-3≠0,所以f(x)≠54,所以f(x)∈(-∞,54)∪(54,+∞).点评这是直接应用反比例函数的值域求解.例2已知f(x)=(xx+-11)2(x≥1),求f(x)的值域.解因为xx-+11=(xx++1)1-2=1-2x+1,又因为x≥1,所以x+1≥2,则0<1x+1≤21,所以0-2x+1≥-1,…  相似文献   

12.
一、直接法例1已知f(x)=x2(x≥0)x(x<0),g(x)=x(x≥0)-x2(x<0),则x<0时,f[g(x)]为()(A)-x(B)-x2(C)x(D)x2解:当x<0时,g(x)=-x2<0,所以f[g(x)]=g(x)=-x2,选(B).求复合函数的解析式,先求内层函数,再求外层函数,另外,分段函数要注意变量的范围.二、换元法例2已知f(1-cosx)=sin2x,求f(x).解:令1-cosx=t则cosx=1-t,-1≤1-t≤1,所以0≤t≤2.所以f(t)=1-(1-t)2=-t2+2t(0≤t≤2)所以f(x)=-x2+2x(0≤x≤2)三、配方法例3f(x-1x)=x2+x12.求f(x).解:f(x-1x)=x2+x12=(x-1x)2+2,所以f(x)=x2+2.四、待定系数法例4已知f(x)=3x-1,f[h(x)]=g(x)=2x+3,h(x)为x…  相似文献   

13.
求不等式恒成立的参数的取值范围,是中学教学的难点之一,也是高考、数学竞赛的热点.下面就此问题的几种基本解法加以论述. 一、利用一次函数的性质 一次函数y=f(x)=ax+b在x∈[m,n]上恒大于零的充要条件是:{a>0,f(m)>0 或{a<0,f(n)>0或{f(m)>0,f(n)>0.(对于y=f(x) =ax+b恒小于零的条件亦可类似给出) 例1 若f(x)=(x-1)m2-6xm+x+1在区间[0,1]上恒为正值,求实数m的取值范围.  相似文献   

14.
如何确定恒成立或有解的不等式中参数的范围是一个难点 ,如果能将参数分离出来 ,再运用有关的函数方程等知识可以较好解决 .下面分情况说明 .一、a 0在 | x|≤ 2时恒成立 ,求 m的范围 .解 :原不等式等价于 ( x2 - x + 1) m 0 ,m f ( x…  相似文献   

15.
函数与不等式关系密切,尤其是含参数的不等式问题,变量较多.处理这类问题,对思维能力的要求很高,稍不注意,便会引起思维混乱导致半途而废,得不出结果.遇到这类问题时,我们应如何处理呢? 例 1 如果 2x-1>m(x2-1)对任m∈[-2,2]都成立,求x的范围. 分析:解题时易想到,由原不等式解出x,再根据m的范围确定x的范围.可以想象,此法解题过程非常烦琐,很难解出结果.应如何考虑呢?注意到m的范围己确定,转换一下角度,把所给不等式看成m的不等式如何?原不等式变形为m(x2-1)-(2x-1)<0,左边显然是m的一次函数.记作f(m),由题意,f(m)<0对任m∈[-2,-]恒成立,由一次函数性质只需f(-2)<0 f(2)<0即可,这样便可解这个关于x的不等式  相似文献   

16.
历史上“草船借箭”“司马光砸缸”的故事,都给我们以有悖于常理的启示.在研究数学问题时,如果正向思维受阻,那么可以运用“顺难则逆,正难则反”的思维方式,向原问题相反的方向去探索,构造其对立的数学形式来解决问题,有时会事半功倍.同学们可以试一试.例1对满足|log2p|<2的一切实数p,求使不等式x2+px+1>3x+p成立的x的取值范围.分析:由|log2p|<2知140时,求x的取值范围.这样处理比较繁琐.反过来,以p为研究对象,有g(p)=(x-1)p+(x2-3x+1),p(14,4)问题转化为关于p的一次函数值为正数时,对参数x的讨论.…  相似文献   

17.
(1)证明:对一次函数f(x)=kx+h(k≠0),若m&;lt;n,f(m)&;gt;0,f(n)&;gt;0,则对任意x∈(m,n),,都有f(x)&;gt;0;(2)试用上面的结论,证明:若a,b,c∈(-1,1),则有ab+bc+ca+1&;gt;0。  相似文献   

18.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

19.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

20.
1a0=1中a≠0 例1当m=__时,函数y=(m+3)x2m+1+4x-5(x≠0)是一个一次函数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号