首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>在解决有关两圆相切的问题时,公切线作为作辅助线,是解决问题的关键.当题目的已知条件中有两圆相切时,过切点作两圆的公切线,构造弦切角,从而架设两圆之间的桥梁,常常会使问题迅速获解.例1如图1,⊙O'与⊙O内切于点A,⊙O的弦BC切⊙O'于点D,AB、AC分别交  相似文献   

2.
多年来 ,圆中等积式的证明问题 ,一直是各省市中考几何压轴题中的一种常见题型 .本文试以相似三角形作为问题化归的基点 ,通过三种代换 ,进而向基点转化的方法 ,对圆中等积式的常见类型的证法进行探讨 .1 基本型 :a·b=c·d或 ab =cd1.1 直接证相似例 1 已知 :如图 1,⊙O1 与⊙O2 内切于P点 ,过P点作直线交⊙O1 于A点 ,交⊙O2 于B点 ,C为⊙O1 上一点 ,过B点作⊙O2 的切线交直线AC于Q点 .求证 :AC·AQ =AP·AB .(2 0 0 4年武汉市中考题 )分析 要证AC ·AQ =AP ·AB △ACP∽△ABQ .连结PC ,过点P作两圆的外公切线MN ,则…  相似文献   

3.
本文介绍两个半径不相等的圆当它们内切或外切时的一个重要性质及其应用 .命题 1 设半径分别为 R,r(R>r)的两个圆内切于 T点 ,自大圆上任意一点 P向小圆作切线 (P与 T不重合 ) ,切点为 Q.那么PT=PQ RR- r.命题 2 设半径分别为 R,r(R>r)的两圆外切于点 T,自大圆上任意一点 P向小圆作切线 (P与 T不重合 ) ,切点为 Q.那么PT=PQ RR+r.1 命题 1的证明设半径分别为 R,r的两圆⊙O,⊙O1 内切于点 T,过大圆⊙O上任意一点 P作小圆⊙ O1 的切线 ,其切点为 Q(P≠ T) .连结 PT交⊙ O1 于 A点 ,再连结 O1 A和 OP.在△ O1 AT与△ OP…  相似文献   

4.
我们已学习过相交弦定理和切割线定理.其实这两个定理可统一于下面的结论中.已知 P 为定点,⊙O 是半径为 R 的定圆,过点 P 任作⊙O的割线交⊙O 于 A、B 两点,边结 OP.求证:PA·PB=|PO~2-R~2|.  相似文献   

5.
“源于教材 ,活于教材”是数学中考题的显著特征 ,因此 ,在基础知识学习和基本技能的训练中 ,要善于对常规题作变式思维 ,以教材基本内容为背景 ,抓住典型题进行演变 ,从而让课本题目鲜活起来 .图 1题目 如图 1,已知⊙O1 、⊙O2 相切于点T ,直线AB、CD经过点T ,交⊙O1 于点A、C ,交⊙O2 于点B、D .求证 :AC∥BD .(人民教育出版社《几何》(第三册 ) 1994年 10月、2 0 0 0年 10月版P97)该题证明方法很多 ,如过点T作两圆的公切线 ,再由弦切角性质等获证 ,这里不再赘述 .本文介绍以此题为背景的几种变式题 .图 2  变式 1 如图 2 ,⊙…  相似文献   

6.
本期问题初177在以AB为直径的半圆⊙O上取一点C,过C引CD⊥AB于D,CD将半圆⊙O分为两个图形,这两个图形的内切圆分别切AB于E、F.求证:AAFE··FEBB=DDFE.初178如图1,⊙O1与⊙O2外切于D,等腰Rt△ACB内接于⊙O1,切点D在半图1圆AB上.过点A、B、C分别作⊙O2的切线AM、BN、CP,M、N、P分别为切点.求证:AM+BN=2CP.高177如图2,半圆⊙O1的直径为图2AB,D为O1B上一点,且不与O1、B重合,过点D且垂直于AB的直线交半圆⊙O1于点C,⊙O2与半圆⊙O1内切于F,与CD切于点N,与BD切于点M.联结CM、AC、CB,过A作∠BAE=∠ACM,边AE…  相似文献   

7.
考题:已知:如图,圆心A(0,-3),⊙A与x轴相切,⊙B的圆心B在x正半轴上,且⊙B与⊙A外切于点P,两圆公切线脚交y轴于点M,交x轴于点N。  相似文献   

8.
题目 如图 1,已知⊙O1 和⊙O2 外切于点P ,AB是⊙O1 和⊙O2 公切线 ,A、B是切点 ,求证 :PA⊥PB(人教版《几何》第三册p .12 9例 4 ) .图中△PAB一般称为切点三角形 .其演变极为丰富 .本文拟对其作一探究 .在探究中注意到合情推理的运用、对称观点的把握和对题目本质的揭示 .探究一 :公切线的演变变 1 公切线演变为一圆切线 ,一圆割线 .如图 2 :直线AB交⊙O1 于点A、C ,切⊙O2 于点B .则结论该如演变 ?简析 此时原题中的点A分化为A、C ,原题中的∠APB分化为∠APB和∠CPB ,易证∠APB+∠CPB =180° .变 2 公切线演变为两…  相似文献   

9.
“三点共线”,在几何中经常遇到,在具体应用时,常犯的错误是将图形的直观当作条件. 题如图1,⊙O1和⊙O2内切于P点,l为两圆的公切线,大⊙O2的弦AB与小⊙O1相切于C点,延长BA与,交于D点,∠PDA=60°.  相似文献   

10.
<正>问题怎样从圆外一点画出圆的切线呢?如图1,点P为⊙O外一点,怎样利用直尺和圆规过点P作⊙O的切线?作法1如图1.(1)连结PO;(2)以PO为直径作圆交⊙O于点A;(3)过P,A两点作一直线,则直线PA就是所要作的圆的切线.  相似文献   

11.
两圆内切时有以下一个性质,不妨称作定理(※). 定理(※):半径为 R、r(R>r)的两圆内切于A点,自大圆上任一点P(与A不重合)向小圆引切线,切点为A',则PA/PA'= 证明:如图1,连O1O并延长,则O1O必过A点,设PA交⊙O1于A1,连OP,O1A1,则 PA'2=PA1·PA,PA’= 因为∠AA1O1=∠A=∠APO, 所以△AA1O1∽△APO,  相似文献   

12.
本文探讨2个尺规作图问题:1?过圆外一点,作直线与圆相切.2?过圆外两点(这两点与圆心不共线),作圆与已知圆相切.希望能起到抛砖引玉的作用,让更多的尺规作图问题得到关注讨论.1过圆O外一点A作与圆O相切的直线问题已知:⊙O以及⊙O外一点A,求作直线过点A且与⊙O相切.作法:1?连结AO;2?取线段AO的中点B;3?以点B为圆心,BA长为半径作⊙B,交⊙O于点C、D;4?作直线AC、AD;则,直线AC、AD为所求.  相似文献   

13.
<正> 对以圆为载体的几何问题,常用以下方法作辅助线: 一、过某些特殊点作园的直径、半径、弦例1 如图1,⊙O的半径为R,以⊙O上的点A为圆心,r(r相似文献   

14.
人教版九年义务教育初中几何第三册p .14 4页有这样一道例题 :已知 :如图 1,⊙O1 和⊙O2 外切于点A ,BC是⊙O1 和⊙O2 的公切线 ,B、C为切点 .求证 :AB⊥AC .图 1解题过程不难理解 ,关键在于作出两圆的内公切线 ,下面简证如下 :证明 :过点A作⊙O1 和⊙O2 的内公切线交BC于点O ,因为OB、OA是⊙O1 的切线 ,所以OB =OA .同理OC =OA ,所以OB =OC =OA .即OA =12 BC ,所以AB⊥AC .这个例题的基本特点是△ABC构成了直角三角形 ,我们不妨称△ABC为切点三角形 ,容易证明切点三角形具有如下性质 :( 1)切点三角形是以两圆的公共点…  相似文献   

15.
考测点导航 1.相交弦、切割线、切线长定理及其推论; 2.这些定理及推论和函数知识相联系后证明圆中的比例线段或求角、求线段长。典型题点击一、已知如图12-15,在直角坐标系中,以y轴上的点C为圆心,1为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D。  相似文献   

16.
在初中《几何》第二册中,介绍了相交弦定理、切割线定理及其推论,其实这些定理可以统一成一个定理.如图1,P是⊙o内一点,Q是⊙O外一点,AB、KH是过P点的弦,MN是过P点的直径,QK是切线,KH⊥MN;QAB是割线,设⊙O的半径为R,由相交弦定  相似文献   

17.
内容概述圆中有关的证明问题是平面几何中涉及知识点最多、综合性和技巧性最强的一类逻辑推理问题.它在初三各类数学竞赛和中考中都被涉及,是考纲上的重点和难点内容,应引起同学们的高度重视.本讲例析探讨圆中常用的一些证题方法和技巧,它用到以下知识点: 1.熟悉(复习)《三角形》、《四边形》、《相似形》中的概念,所有定理、公理、性质及其运用方法和技巧. 2.复习《圆》一章中的有关概念,所有判定定理与性质定理及其运用方法和技巧. 3.归纳圆中常见辅助线:(1)遇弦常作弦心距和半径;(2)遇有直径作周角,连结90°圆周角的弦;(3)两圆相切作公切线及连心线;(4)两圆相交作连心线  相似文献   

18.
本期问题 初189 如图1,在△ABC中,AB:BC:CA=3:5:4,⊙O1、⊙O2是两个互相外切的等圆,且都与边BC相切,其中,⊙O1,又与边AB相切,⊙O2又与边AC相切.已知直线O1O2分别交两圆于点P、Q,分别过点P、Q作BC的垂线,垂足为M、N.求证:NC=2BM.  相似文献   

19.
与圆的直径或与圆的切线有关的问题时学习中的一个重点和难点,在中考中屡见不鲜,解答它们,除了灵活利用圆的有关性质或定理外,别忘了利用勾股定理,有时它可助你一臂之力. 例1(2016年宁波市中考题)如图1,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E. (1)求证:DE是⊙O的切线; (2)求DE的长.  相似文献   

20.
在处理有关两圆相交、相切等问题时 ,常常要添加适当的辅助线 ,将较为分散的条件和图形相对集中 ,从而使问题能简捷获解 .这时 ,公切线或公共弦是重要的辅助线 ,它可以使弦切角与圆周角、圆内接四边形的内角与外角等得以沟通 .一、当两圆相交时 ,通常需要作出公共弦例 1 如图 1,⊙O1 和⊙O2 相交于A、B两点 ,过B点作⊙O1 的切线交⊙O2 于D点 ,连结DA并延长 ,与⊙O1 相交于C点 ,连结BC ,过A点作AE∥BC ,与⊙O2 相交于E点 ,与BD相交于F点 .(1)求证 :EF·BC =DE·AC .(2 )若AD =3 ,AC =1,AF =3 ,求EF…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号