首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The original article by Kamberelis and Wehunt (2012) discusses an interesting and important research subject in science education as it focus on classroom interactions and the characteristics of the discourse production of interlocutors. The authors start from the premise that discourse heterogeneity is constitutive of social activities, which is supported by others like Mikhail Bakhtin (Speech genres and other late essays. University of Texas Press, Austin, 1981) and Erving Goffman (Frame analysis: an essay on the organization of experience. Harper and Row, London, 1974). They also present the definitions of three key elements that organize hybrid discourse: (a) lamination of multiple cultural frames, (b) shifting relations between people and their discourse, and (c) shifting power relations between people. Finally, the authors analyze how these three elements organize students’ science discourse in the classroom and how it contributes to the creation of a micro-community of practice capable of helping the emergence of a disciplinary knowledge that is legitimized by and strengthens the identity of the group. In the present commentary, I discuss how Michael Foucault’s (1970) concept of discursive procedure may help us to analyze the (often neglected) teacher’s role in the development of hybrid discourse practices.  相似文献   

2.
In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers’ talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women’s Studies International Forum, 26(1):69–77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: ‘Teaching science through inquiry’, ‘Traditional science teacher’, ‘Traditional primary teacher’, ‘Teacher as classroom authority’, and ‘Primary teacher as a role model’ (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.  相似文献   

3.
This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was assessed. Prior research has predominately examined relationships and roles of groups of teachers and informal educators in the museum setting (Tal et al. in Sci Educ 89:920–935, 2005; Tal and Steiner in Can J Sci Math Technol Educ 6:25–46, 2006; Tran 2007). The current study utilized case study methodology to examine one relationship (between two educators) in more depth and in a different setting—an elementary classroom. The relationship was defined through a framework of cooperation, coordination, and collaboration (Buck 1998; Intriligator 1986, 1992) containing eight dimensions. Findings suggest a relationship of coordination, which requires moderate commitment, risk, negotiation, and involvement, and examined the roles that each educator played and how they negotiated these roles. Consistent with previous examinations in science education of educator roles, the informal educator’s role was to provide the students with expertise and resources not readily available to them. The roles played by the classroom teacher included classroom management, making connections to classroom activities and curricula, and clarifying concepts. Both educators’ perceptions suggested they were at ease with their roles and that they felt these roles were critical to the optimization of the short time frames (1 h) the informal educator was in the classroom. Pre and posttest tests demonstrated students learned as a result of the programs.  相似文献   

4.
This paper reports on a teacher’s and his students’ responsiveness to a new tetrahedral-oriented (Mahaffy in J Chem Educ 83(1):49–55, 2006) curriculum requiring more discursive classroom practices in the teaching of chemistry. In this instrumental case study, we identify the intentions of this learner-centered curriculum and a teacher’s development in response to this curriculum. We also explore the tensions this teacher experiences as students subsequently respond to his adjusted teaching. We use a Chemistry Teacher Inventory (Lewthwaite and Wiebe in Res Sci Educ 40(11):667-689, 2011; Lewthwaite and Wiebe in Can J Math Sci Technol Educ 12(1):36–61, 2012; Lewthwaite in Chem Educ Res Pract. doi:10.1039/C3RP00122A, 2014) to assist the teacher in monitoring how he teaches and how he would like to improve his teaching. We also use a student form of the instrument, the Chemistry Classroom Inventory and Classroom Observation Protocol (Lewthwaite and Wiebe 2011) to verify the teacher’s teaching and perception of student preferences for his teaching especially in terms of the discursive processes the curriculum encourages. By so doing, the teacher is able to use both sets of data as a foundation for critical reflection and work towards resolution of the incongruence in data arising from students’ preferred learning orientations and his teaching aspirations. Implications of this study in regards to the authority of students’ voice in triggering teachers’ pedagogical change and the adjustments in ‘teachering’ and ‘studenting’ required by such curricula are considered.  相似文献   

5.
This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students’ environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students’ background, social interactions, and classroom structures, impact the environmental identity and behavior of students. In this investigation, the identity theory of emotion of Stryker (2004) from the field of sociology is utilized in the interpretation of students’ reactions to classroom experiences as they proceed through the Environmental Science course. The participants in this study are an Environmental Science teacher and the 10–12th grade students in her Environmental Science elective course. The researcher collected data for a period of six months, attending class on a daily basis. Data was collected through participant observation, videotaping, interviews, and cogenerative dialogues. The results of this study inform science educators by illuminating important elements, such as students’ emotional responses to activities in class, conflicting elements of students’ identities, and students’ openness and willingness to critically reflect upon new information, which contribute to whether a student is likely to change their views towards the environment and pro-environmental behaviors.  相似文献   

6.
Societal benefit depends on the general public’s understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439–443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57–69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93–99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110–134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175–218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916–937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as “authentic” if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110–134, 2009; Chinn and Malhotra in Sci Educ 86(2):175–218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced their understanding of biotechnology? As respondents explored numerous ideas in order to develop a workable research question, struggled to create a viable protocol, executed their experiment, and then evaluated their results, they commented on unexpected topics regarding the nature of science as well as specific content knowledge relating to their experiments. Four out of five participants reported they learned the most during authentic inquiry laboratory experience.  相似文献   

7.
Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry in their own classrooms. In this study, we used Aikenhead’s (Sci Educ 81: 217–238, 1997, Science Educ 85:180–188, 2001) notion of border crossing to describe this transition preservice teachers must make from science student to science teacher. We examined what one cohort of eight preservice secondary science teachers said, did, and wrote as they both conducted a two-part inquiry investigation and designed an inquiry lesson plan. We conducted two types of qualitative analyses. One, we drew from Costa (Sci Educ 79: 313–333, 1995) to group our preservice teacher participants into one of four types of potential science teachers. Two, we identified successes and struggles in preservice teachers’ attempts to negotiate the cultural border between veteran student and beginning teacher. In our implications, we argue that preservice teachers could benefit from explicit opportunities to navigate the border between learning and teaching science; such opportunities could deepen their conceptions of inquiry beyond those exclusively fashioned as either student or teacher.  相似文献   

8.
There is growing research interest in the challenges and opportunities learners face in representing scientific understandings, processes and reasoning. These challenges include integrating verbal, visual and mathematical modes in science discourse to make strong conceptual links between representations and classroom experiences. Our paper reports on a project that aimed to identify practical and theoretical issues entailed in a representation-intensive approach to guiding students’ conceptual learning in science. We focus here on a teacher developing students’ understanding of the formation of ions and molecules. We argue that the representations produced by students in this process met the criteria for representational competence proposed by diSessa (Cognition and Instruction, 22, 293–331, 2004) and Kozma & Russell (2005). The students understood that an effective representation needed to show relevant information, focus on pertinent points, be self-sufficient in its claims about the topic and provide coherent links between different parts of the representation. The final activity showed that their representations reached Kozma & Russell’s (2005) highest level of competence, where the students were able to use specific features of their representations to critique their suitability for explaining bonding and were able to show how their representation linked to the periodic table as a representation. We conclude by considering the implications of these findings.  相似文献   

9.
Density has been reported as one of the most difficult concepts for secondary school students (e.g. Smith et al. 1997). Discussion about the difficulties of learning this concept has been largely focused on the complexity of the concept itself or student misconceptions. Few, if any, have investigated how the concept of density was constituted in classroom interactions, and what consequences these interactions have for individual students?? conceptual understanding. This paper reports a detailed analysis of two lessons on density in a 7th Grade Australian science classroom, employing the theory of Distributed Cognition (Hollan et al. 1999; Hutchins 1995). The analysis demonstrated that student understanding of density was shaped strongly by the public classroom discussion on the density of two metal blocks. It also revealed the ambiguities associated with the teacher demonstration and the student practical work. These ambiguities contributed to student difficulties with the concept of density identified in this classroom. The results of this study suggest that deliberate effort is needed to establish shared understanding not only about the purpose of the activities, but also about the meaning of scientific language and the utility of tools. It also suggests the importance of appropriate employment of instructional resources in order to facilitate student scientific understanding.  相似文献   

10.
11.
Science education has experienced significant changes since the mid-20th century, most recently with the creation of STEM curricula (DeBoer 1991; Yager 2000). The emergence of the World Wide Web as a tool in research and discovery offers Pre-K-12 science education an opportunity to share information and perspectives which engage students with the scientific community (Zoller 2011). Students are able to access open, transparent sites creating common resources pools and autonomous working groups which can be used for shared problem solving. Science teachers should carefully build web 2.0 technology into their practice based on a changing pedagogy. Instead of focusing on teaching rule-based concepts and processes in which the teacher’s role is that of expert, education should be focusing on possibilities of the web both in scientific research and understanding. In addition, web-focused education can also help remake scientific product as a public good in the lives of both science researchers and science consumers.  相似文献   

12.
Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261–274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737–759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators’ teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.  相似文献   

13.
While some researchers have argued for science classrooms that embrace open-inquiry by engaging students in doing science as scientists do (cf. National Research Council [NRC] 1996; Driver et al. in Sci Educ 84:287–312, 2000; Windschitl et al. in Sci Educ 87(1):112–143, 2008), others have argued that open-inquiry is impractical, ineffective, and perhaps even counter-productive towards promoting normative scientific ideas (cf. Kirschner et al. in Educ Psychol 41(2):75–86, 2006; Settlage in J Sci Teach Educ 18:461–467, 2007). One of the challenges in informing the debate on this issue is the scarcity of well-documented courses that engage students in open-inquiry characteristic of scientific research. This paper describes the design, implementation, and outcomes of such a course for undergraduates planning on becoming elementary teachers. The goal of the class was to immerse future teachers in authentic, open-inquiry (without specific learning goals related to scientific concepts) in hopes that students would come away with a deeper understanding of the nature of science (NOS) and improved attitudes towards science. Data collected from a variety of sources indicate that an authentic, open-inquiry experience is feasible to implement in an undergraduate setting, gives students a more sophisticated NOS understanding, improves students’ attitudes towards science and open-inquiry, and changes the way they intend to teach science in their future classrooms.  相似文献   

14.
This study explored the biography-driven approach to teaching culturally and linguistically diverse students in science education. Biography-driven instruction (BDI) embraces student diversity by incorporating students’ sociocultural, linguistic, cognitive, and academic dimensions of their biographies into the learning process (Herrera in Biography-driven culturally responsive teaching. Teachers College Press, New York, 2010). Strategies have been developed (Herrera, Kavimandan and Holmes in Crossing the vocabulary bridge: differentiated strategies for diverse secondary classrooms. Teachers College Press, New York, 2011) that provide teachers with instructional routines that facilitate BDI. Using systematic classroom observations we empirically demonstrate that these activate, connect, affirm, strategies are likely to be effective in increasing teachers’ biography-driven practices. Implications for theory and practice are discussed.  相似文献   

15.
The goal of this article is to examine the racially hostile environment of U.S. public schooling towards Black males. Drawing on the work of Foucault (Discipline and punish. The birth of the prison, Penguin Books, London, 1977; Michel Foucault: beyond structuralism and hermeneutics, The Harvester Press, Brighton, 1982) regarding the construction of society’s power relations and Bourdieu’s (Power and ideology in education, Oxford University Press, New York, 1977; Handbook of theory and research for the sociology of education. Greenwood Press, New York, 1986; The logic of practice. Polity Press, Cambridge, 1990) work concerning how beliefs are established, this article demonstrates how power operates within schools alongside racism, racial profiling, and gender stereotypes to criminalize Black males. Additionally, the utilization of the theoretical lenses of populational reasoning (Popkewitz in Struggling for the soul: the politics of schooling and the construction of the teacher, Teachers College Press, New York, 1998), conceptual narrative (Somers and Gibson in Social theory and the politics of identity, Blackwell, Cambridge, 1994), and critical race theory (Delgado and Stefancic 2001) links the common narrative and the cultural memory of Black males to the death of Trayvon Martin and the treatment of Black males in schools.  相似文献   

16.
Despite an increased focus on science, technology, engineering, and mathematics (STEM) in U.S. schools, today’s students often struggle to maintain adequate performance in these fields compared with students in other countries (Cheek in Thinking constructively about science, technology, and society education. State University of New York, Albany, 1992; Enyedy and Goldberg 2004; Mandinach and Lewis 2006). In addition, despite considerable pressure to promote the placement of students into STEM career fields, U.S. placement is relatively low (Sadler et al. in Sci Educ 96(3):411–427, 2012; Subotnik et al. in Identifying and developing talent in science, technology, engineering, and mathematics (STEM): an agenda for research, policy and practice. International handbook, part XII, pp 1313–1326, 2009). One explanation for the decline of STEM career placement in the U.S. rests with low student affect concerning STEM concepts and related content, especially in terms of self-efficacy. Researchers define self-efficacy as the internal belief that a student can succeed in learning, and that understanding student success lies in students’ externalized actions or behaviors (Bandura in Psychol Rev 84(2):191–215, 1977). Evidence suggests that high self-efficacy in STEM can result in student selection of STEM in later educational endeavors, culminating in STEM career selection (Zeldin et al. in J Res Sci Teach 45(9):1036–1058, 2007). However, other factors such as proficiency play a role as well. The lack of appropriate measures of self-efficacy can greatly affect STEM career selection due to inadequate targeting of this affective trait and loss of opportunity for early intervention by educators. Lack of early intervention decreases selection of STEM courses and careers (Valla and Williams in J Women Minor Sci Eng 18(1), 2012; Lent et al. in J Couns Psychol 38(4), 1991). Therefore, this study developed a short-form measure of self-efficacy to help identify students in need of intervention.  相似文献   

17.
Research indicates that differentiated practices enhance the likelihood of meeting the needs of students who find literacy learning challenging (Tobin & McInnes, 2008; Tomlinson, 2003). The aim of the professional development project described here was to leverage these findings and to build the foundation for future research exploring if similar outcomes occurred in science. We wanted to examine teachers’ perceptions regarding planning and implementing Differentiated Instruction (DI) in science. Our workshops emphasized multimodal possibilities, so the project draws on research indicating that elementary students are able to demonstrate their understanding of science concepts in a variety of ways (Tippett, 2003) as well as research on DI in the context of language and literacy instruction. The study yielded insights about in-service teachers’ perceptions of the possibilities and potential barriers presented by DI in science.  相似文献   

18.
This article explores four adolescent novels published between 1999 and 2010 specifically for the intersections of Christian faith and lesbian and gay sexual identities. Using cultural, queer, and ideological theories, the piece makes distinctions between progressive and traditional depictions of both Christianity and LGBTQ teen protagonists in Nancy Garden’s The Year They Burned the Books (1999), Laura Torres’s November Ever After (1999), Alex Sanchez’s The God Box (2007), and Mark Hardy’s Nothing Pink (2008).  相似文献   

19.
Research on teachers’ professionalism and professional development has increased in the last two decades. A main focus of this line of research has been the cognitive component of teacher professionalism, i.e., professional knowledge. Most of the previous studies on teacher knowledge—such as the Learning Mathematics for Teaching (LMT) (Hill et al. 2004), the Professional Competence of Teachers, Cognitively Activating Instruction, and Development of Students´ Mathematical Literacy (COACTIV) (Baumert et al. 2010), and the Mathematics Teaching in the 21st Century (MT21) (Schmidt et al. 2007) studies—have been conducted in the field of mathematics teachers’ pedagogical content knowledge (PCK) and content knowledge (CK). There have been few comparable studies conducted with science teachers, especially biology teachers. To fill the gap, this study examines the development and use of instruments to measure biology teachers’ CK and PCK. In particular, this study describes a method to develop reliable, objective, and valid instruments measuring teachers’ CK and PCK in four steps by the use of empirical data of students. Additionally, the study explores whether CK and PCK might be measured as separate knowledge categories by using a paper-and-pencil test. This paper presents a theoretical model that guides test development and provides steps to develop and validate the instruments. Details are also provided regarding the computation of the Rasch scale score measures for 158 biology teachers. The results indicate that the instruments measured teachers’ CK and PCK in an objective, valid, and reliable way. This suggests that the new instruments can be used in combination with classroom observations to examine teaching quality and further its relation to student learning.  相似文献   

20.
The National Science Education Standards emphasize teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale (NRC 2011). Scale includes understanding that different characteristics, properties, or relationships within a system might change as its dimensions are increased or decreased (NRC 2011). One such relationship involves surface area to volume which is a pervasive concept that can be found throughout different sciences. This concept is important for students to not only understand the association of the two, but to also be able to apply this relationship in science contexts. The purpose of this study is to investigate the factors that influence the understanding surface area to volume relationships. This study examined middle school students’, high school students’, and science teachers’ logical thinking skills (including proportional reasoning), visual-spatial skills, and understandings of surface area to volume relationships. Regression results indicated that participants’ reasoning abilities and components of visual-spatial skills could be possible predictors for one’s ability to understand surface area to volume relationships. Implications for teaching scale concepts such as surface area to volume relationships in the science classroom are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号