首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This study examined the relationships among Taiwanese high school students’ scientific epistemic beliefs, conceptions of learning science, and self-efficacy of learning science. The questionnaire responses gathered from 377 high school students in Taiwan were utilized to elicit such relationships. The analysis of the structural equation model revealed that students’ absolutist scientific epistemic beliefs led to lower-level conceptions of learning science (i.e. learning science as memorizing, preparing for tests, calculating, and practicing) while sophisticated scientific epistemic beliefs might trigger higher-level conceptions of learning science (i.e. learning science as increase of knowledge, applying, and attaining understanding). The students’ lower-level conceptions of learning science were also found to negatively associate with their self-efficacy of learning science, while the higher-level conceptions of learning science fostered students’ self-efficacy. However, this study found that students who viewed scientific knowledge as uncertain (advanced epistemic belief) tended to possess lower self-efficacy toward learning science.  相似文献   

2.
This study explores the relationships among Taiwanese high school students’ scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling technique was utilized to reveal that the students’ absolutist SEBs led to reproduced COLS (i.e. learning science as memorizing, preparing for tests, calculating, and practicing) while sophisticated SEBs were related to constructive COLS (i.e. learning science as increase of knowledge, applying, and attaining understanding). The students’ reproduced COLS were also negatively associated with surface motive of learning science, whereas the constructive COLS were positively correlated with students’ deep motive of learning science. Finally, this study found that students who viewed scientific knowledge as uncertain (advanced epistemic belief) tended to possess a surface motive of learning science. This finding implies that the implementation of standardized tests diminishes Taiwanese high school students’ curiosity and interest in engaging deeply in science learning.  相似文献   

3.
This study investigated the relationship among 68 high school students’ scientific epistemological beliefs (SEBs), cognitive structures regarding nuclear power usage, and their informal reasoning regarding this issue. Moreover, the ability of students’ SEBs as well as their cognitive structures for predicting their informal reasoning regarding this issue was also examined. The participants’ SEBs were assessed with a quantitative instrument; their cognitive structures were assessed through tape‐recorded interviews and were further analyzed with the ‘flow map method’; their reasoning regarding nuclear power usage was assessed with an open‐ended questionnaire; and, then, their responses were analyzed both qualitatively and quantitatively. It was revealed that students’ beliefs about the justification of scientific knowledge (an aspect of the beliefs on the nature of knowing science) were significantly correlated with their reasoning quality; the extent and the richness of students’ cognitive structures as well as their usage of the information processing mode, ‘comparing,’ were positively correlated with their reasoning quality. A series of regression analyses further confirmed that students’ use of the information processing mode, ‘comparing,’ was the most significant factor for predicting reasoning quality, while their beliefs regarding the justification of scientific knowledge was the other important predictor.  相似文献   

4.
In recent years, there has been an increasing interest among educational researchers in exploring the relationships between learners’ epistemological beliefs and their conceptions of learning. This study was conducted to investigate these relationships particularly in the domain of science. The participants in this study included 407 Taiwanese college science‐major students. All of them responded to two major questionnaires, one assessing their scientific epistemological beliefs (SEBs) and the other one probing their conceptions of learning science (COLS). The SEB questionnaire included four factors: “certainty,” “source,” “development,” and “justification” of science knowledge. The COLS survey consisted of six factors in a hierarchical order, that is, learning science as “memorizing,” “preparing for tests,” “calculating and practicing,” “increasing one’s knowledge,” “application,” and “understanding and seeing in a new way.” The students’ confidence and interest toward learning science were also assessed by additional questionnaire items. Stepwise regression analyses, in general, showed coherence between students’ SEBs and their COLS, indicating that the sophistication of SEBs was consistent with less agreement with lower‐level COLS (such as “memorizing” and “preparing for tests”) as well as more agreement with higher‐level COLS (such as “understanding and seeing in a new way”). However, the SEB’s “justification” factor was positively related to almost all of COLS factors from the lower‐level to higher‐level. This study finally found that among all of the SEB and COLS factors, the “preparing for tests” factor in COLS was the solely significant variable for predicting students’ interest in science and confidence toward learning science.  相似文献   

5.
This study investigated students’ scientific epistemological beliefs in relation to socio-economic status (SES) and gender. Data were obtained from 1,152 eight grade Turkish elementary school students using Scientific Epistemological Beliefs instrument. Canonical correlation analysis indicated that students with a working mother and educated parents as well as greater number of books at home together with a separate study room are more likely to have tentative views and less likely to have fixed views about science compared to students with unemployed mother, uneducated parents, less books at home, and no separate study room. Generally, results revealed while family SES correlated positively with tentative views, it was negatively associated with fixed views, implying that students from high SES family were more likely to believe that knowledge is uncertain and not handed down by authority compared to students from low SES family. This study, however, failed to indicate any relationship between father work-status, buying daily newspaper and epistemological beliefs. In addition, Multivariate Analysis of Variance indicated that boys more likely to have tentative beliefs compared to girls.  相似文献   

6.
This study investigated students’ scientific epistemological beliefs in relation to socio-economic status (SES) and gender. Data were obtained from 1,152 eight grade Turkish elementary school students using Scientific Epistemological Beliefs instrument. Canonical correlation analysis indicated that students with a working mother and educated parents as well as greater number of books at home together with a separate study room are more likely to have tentative views and less likely to have fixed views about science compared to students with unemployed mother, uneducated parents, less books at home, and no separate study room. Generally, results revealed while family SES correlated positively with tentative views, it was negatively associated with fixed views, implying that students from high SES family were more likely to believe that knowledge is uncertain and not handed down by authority compared to students from low SES family. This study, however, failed to indicate any relationship between father work-status, buying daily newspaper and epistemological beliefs. In addition, Multivariate Analysis of Variance indicated that boys more likely to have tentative beliefs compared to girls.  相似文献   

7.
The purpose of this qualitative interpretive research study was to examine high school students’ written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students’ scientific explanations and students’ perceptions of scientific explanations. Sixteen students from a rural high school in the Southeastern United States were the participants of this research study. The data consisted of students’ laboratory reports and individual interviews. The results indicated that students’ explanations were primarily based on first-hand knowledge gained in the science laboratories and mostly representing procedural recounts. Most students did not give explanations based on a theory or a principle and did not use deductive reasoning in their explanations. The students had difficulties explaining phenomena that involved intricate cause–effect relationships. Students perceived scientific explanation as the final step of a scientific inquiry and as an account of what happened in the inquiry process, and held a constructivist–empiricist view of scientific explanations. Our results imply the need for more explicit guidance to help students construct better scientific explanations and explicit teaching of the explanatory genre with particular focus on theoretical and causal explanations.  相似文献   

8.
This position paper proposes the enhancement of teacher and student learning in science classrooms by tapping the enormous potential of information communication and technologies (ICTs) as cognitive tools for engaging students in scientific inquiry. This paper serves to challenge teacher-held assumptions about students learning science ‘from technology’ with a framework and examples of students learning science ‘with technology’. Whereas a high percentage of students are finding their way in using ICTs outside of school, for the most part they currently are not doing so inside of school in ways that they find meaningful and relevant to their lives. Instead, the pedagogical approaches that are most often experienced are out-of-step with how students use ICTs outside of schools and are not supportive of learning framed by constructivism. Here we describe a theoretical and pedagogical foundation for better connecting the two worlds of students’ lives: life in school and life outside of school. This position paper is in response to the changing landscape of students’ lives. The position is transformative in nature because it proposes the use of cyber-enabled resources for cultivating and leveraging students new literacy skills by learning ‘with technology’ to enhance science learning.  相似文献   

9.
The main purpose of this study was to examine the structural relationships between scientific epistemological views (SEVs) and information commitments (ICs) of high school students in Taiwan. Data were collected from 486 Taiwanese high school students via two self‐reporting instruments: one was the SEV questionnaire, including five scales for representing students’ views toward scientific knowledge; and the other was the ICs survey, involving six scales for exploring their evaluative standards and searching strategies of online science information. Structural equation modelling analysis was used to examine the relationships between the aspects of SEVs and ICs. The results of the measurement model confirmed that both the SEVs and ICs instruments had highly satisfactory validity and reliability. The structural equation modelling analysis further indicated that students’ SEVs guided their evaluative standards and searching strategy when dealing with Web‐based science information. For example, students who viewed scientific knowledge as more changeable and tentative significantly tended to adopt a more sophisticated evaluative standard, such as carefully inspecting the content of web sites for judging the usefulness. The findings in general suggested that students with more constructivist‐oriented SEVs might develop more advanced standards and searching strategy toward online scientific information to derive great benefit from Web‐based environments. Consequently, the role of SEVs should be highlighted as increasingly metacognitive engagement with online science information.  相似文献   

10.
This research investigated the sources of explanations and understanding of natural phenomena in terms of the students’ cultural and school science experiences. The first phase involved interviews with eight village elders that probed their explanations and understanding of natural phenomena. The second phase involved the design, development and administration of two questionnaires on natural phenomena to 179 students in a rural boarding high school in Papua New Guinea (PNG). Most village elders gave explanations of many of the phenomena in terms of spirits, spells, magic, religion, and personal experiences. Most school-aged students choose scientific explanations of natural phenomena in terms of what they had learned in school or from personal experiences. However, many choose explanations of the same phenomena about spirits, spells and magic that came from the village, family or home. The study revealed that students’ ideas about natural phenomena are strongly governed and controlled by their school science knowledge in the school setting. It is likely that their own traditional knowledge cannot be identified in a school setting but that questionnaires in the students’ local language be given to students in their villages (as opposed to school). In addition, so as not to diminish the value of this traditional knowledge, science education programs are needed that are able to consider and harmonise traditional knowledge with school science.  相似文献   

11.
12.
The purpose of this study was to propose and test a motivational model of persistence in science education. The model posits that science teachers’ support of students’ autonomy positively influences students’ self-perceptions of autonomy and competence. These self-perceptions, in turn, have a positive impact on students’ self-determined motivation toward science which leads to their intentions to pursue science education and eventually work in a scientific domain. This model was tested with high school students (n=728). Results from univariate analyses of variance and from structural equation modeling analyses (with LISREL) were found to support the proposed model. In addition, a direct link was obtained between perceptions of competence and intentions to pursue a science education, indicating that higher levels of perceived competence predicted higher levels of persistence intentions. The present findings support Self-Determination Theory and open the way to future research from a motivational approach in this area.  相似文献   

13.
The current research examined whether instructional activities centering on contrasting cases promoted secondary school students’ evaluations of source features present in a multiple-documents inquiry context. Two hypothetical students’ document evaluation strategy protocols were designed: One featured more sophisticated strategies commonly enacted by experts and better college students and a second featured less sophisticated strategies commonly enacted by secondary school students. A series of classroom-based activities required that students compare/contrast the two protocols to decide which were the best strategies when analyzing multiple scientific documents and why. The findings demonstrated that students who previously participated in the intervention activities included more scientific concepts from more useful documents when generating essay responses from memory, displayed better rankings of the usefulness of the set of multiple documents, and offered more principled justifications based on source feature evaluations of trustworthiness compared to students who instead received typical classroom instruction. We discuss the instructional implications of a contrasting-cases approach in facilitating secondary school students’ usage of source features within multiple-documents inquiry contexts.  相似文献   

14.
The primary purpose of this study was to explore not only the effects of epistemic beliefs in science on science-text reading but also the gender differences in epistemic beliefs and the reading process. The interactions between gender and epistemic beliefs during reading were also explored. A total of 25 university students, 13 male and 12 female, were paid to participate in the study. The scientific epistemological beliefs (SEBs) questionnaire was used to probe the subjects’ epistemic beliefs in science, while the eye-tracking method was employed to record their science-text reading process. It was demonstrated that the participants in the study had developed sophisticated SEBs. Complicated SEBs were associated with higher cognitive attention to the reading of data-related information but less mental effort to fact, scientific explanations, and the microview photos. As for the gender difference, female students displayed less mental effort in comprehending scientific explanations, but attended more to data and the microview graphic. It is argued that female learners are better at processing textual information. Interactions between SEBs and gender were found and discussed.  相似文献   

15.
The purpose of this study was to understand the impact of an apprenticeship program on high school students’ understanding of the nature of scientific inquiry. Data related to seventeen students’ understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic scientific research helped the participants to develop competency in experimentation methods it had limited impact on participants’ learning of the implicit aspects of scientific inquiry and NOS. Discussion focuses on the importance of making the implicit assumptions of science explicit to the students in such authentic scientific inquiry settings through structured curriculum.  相似文献   

16.
Components of Conceptual Ecologies   总被引:1,自引:0,他引:1  
The theory of conceptual change is criticized because it focuses only on supposed underlying logical structures and rational process processes, and lacks attention to affective aspects as well as motivational constructs in students’ learning science. This is a vast underestimation of the complexity and diversity of one’s change of conceptions. The notion of conceptual ecology provides a context for understanding individuals’ conceptual change learning, as it is the environment through which all information is interpreted. This research investigated how high school students’ statements, made in answering questions, reflect selected components of their conceptual ecologies. Data for this study was collected from six interviews in which seven students took part. The data also include the science teacher’s profiles of each student, the students’ personal journals, their assignments, and their examinations and answers in class. The analysis presented will here include only those components that were represented in the discourse of the seven high school students who were interviewed. When students were asked questions, there was evidence of the engagement of the various components of conceptual ecologies. These components include: epistemological commitments, metaphysical beliefs, the affective domain and emotional aspects, the nature of knowledge, the nature of learning, the nature of conceptions, and past experience. Evidence from this study suggests that these components might function as constraints to learning. This study contributes to the field by expanding our knowledge of the components of high school students’ conceptual ecologies through its definition of the categories and themes associated with those components. In examining across the range of components, the study illustrates the variety and sources of science conceptions within high school students’ conceptual ecologies.  相似文献   

17.
This investigation examines the role of students’ home and school variables in producing the achievement gap between second-generation Turkish students and their native peers in Austria, Germany, and Switzerland. Using the data from PISA 2006, this study supports past findings that both home and school resources affect the educational outcomes of immigrant students in their host society's school system. Specifically, the findings reveal that in Austria, Germany, and Switzerland, second-generation Turkish students had significant disadvantages in terms of allocated resources at home and in school. More often than not, these disadvantages were found to have significantly negative effects in terms of second-generation Turkish students’ test outcomes relative to their native peers. In all three countries, however, the differences between the second-generation Turkish students and their native peers in terms of their family/home resources were found to explain more of the achievement gap than the differences in their schooling resources.  相似文献   

18.
The article builds upon a study where students’ relations to science are related to their worldviews and the kind of worldviews they associate with science. The aim of the study is to deepen our knowledge of how worldview and students’ ways to handle conflicts between their own worldview and the worldview they associate with science, can add to our understanding of students’ relations to science. Data consists of students’ responses to a questionnaire (N = 47) and to interviews (N = 26). The study shows that for students who have a high ability in science, those who have taken science-intense programmes in upper secondary school to a higher extent than others have worldviews in accordance with the worldviews they associate with science. This indicates that students who embrace a worldview different from the one they associate with science tend to exclude themselves from science/technology programmes in Swedish upper secondary school. In the article the results are presented through case studies of single individuals. Those students’ reasoning is related to the results for the whole student group. Implications for science teaching and for further research are discussed.  相似文献   

19.
COOPERATIVE TEST CONSTRUCTION: THE LAST TEMPTATION OF EDUCATIONAL REFORM?   总被引:1,自引:0,他引:1  
For decades traditional methods of testing have been criticized for saying relatively little reliably about students’ ability as well as causing anxiety, which can negatively affect students’ recall of learned information. The reform movement with its innovative approaches focusing on learner-centered education perceives assessment as an interactive feedback mechanism, which must provide for active, collaborative reflection by both teacher and students. This means that students must be active participants in designing assessment tasks and be given responsibility for using assessment data to monitor and improve their own learning (Valencia, 1990, p. 339). Focusing on alternative methods of assessment proposed by the opponents of traditional ones, the present study aimed at investigating the impact of cooperative test construction on Iranian EFL (English as a Foreign Language) students’ achievement as well as their attitudes towards such tests. The participants in this study were second- grade high school students (equivalent to Grade 11 in US senior high school) who were assigned to experimental and control groups based on their scores on a standardized retired version of Nelson test. Both groups received the same schedule of instruction for sixteen weeks. The students in the experimental group experienced cooperative test construction while the students in the control group did not have any role in the construction of their tests. The findings revealed statistically significant difference between grammatical knowledge of the students who cooperatively made their own test items and that of those who were tested traditionally. Furthermore, the students’ reactions to cooperative test construction were overwhelmingly positive.  相似文献   

20.
There is, no doubt, untapped potential in using technological tools to enhance the understanding of science concepts. This study examines the potential by observing 7th and 8th grade middle school students’ (n = 23) use of portable data collection devices in a nine-week elective class, Exploring Technologies. Students’ use of the data collection devices and subsequent interactions were traced through audiocassette and videocassette recordings, field notes, and student artifacts. The culminating activity for the course was a scientific investigation that required students to use the technologies to answer student-selected research questions. To illustrate the use of technology as a mediatory tool, an inquiry investigation of three student groups is described. In examining the three groups of middle school students the researchers encountered specific evidence of technology maximizing students’ science learning. The students were able to use the portable data collection devices in their investigations as they discussed scientific ideas related to temperature and heat. The study’s findings indicated that the three student groups were able to use the tools to conduct scientific inquiry and engage in scientific discourse. Further research on instructional approaches that allow students to develop expertise by using technology as tools to construct knowledge about complex phenomena is encouraged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号