首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract

Knee functional disorders are one of the most common lower extremity non-traumatic injuries reported by cyclists. Incorrect bicycle configuration may predispose cyclist to injury but the evidence of an effect of saddle setback on knee pain remains inconclusive. The aim of this study was to determine the effect of saddle setback on knee joint forces during pedalling using a musculoskeletal modelling approach. Ten cyclists were assessed under three saddle setback conditions (range of changes in saddle position ~6 cm) while pedalling at a steady power output of 200 W and cadence of 90 rpm. A cycling musculoskeletal model was developed and knee joint forces were estimated using an inverse dynamics method associated with a static optimisation procedure. Our results indicate that moving the saddle forwards was not associated with an increase of patellofemoral joint forces. On the contrary, the tibiofemoral mean and peak compression force were 14 and 15% higher in the Backward than in the Forward condition, respectively. The peak compression force was related to neither pedal force nor quadriceps muscle force but coincided with the eccentric contraction of knee flexor muscles. These findings should benefit bike fitting practitioners and coaches in the design of specific training/rehabilitation protocols.  相似文献   

2.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

3.
Non-circular chainrings theoretically enhance cycling performance by increasing effective chainring diameter and varying crank velocity, but research has failed to consistently reproduce the benefits in cycling trials. The aim of this study was (1) to investigate the effect of different chainring shapes on sagittal knee joint moment and sagittal lower limb joint powers and (2) to investigate whether alterations are affected by cadence and workload. Fourteen elite cyclists cycled in six conditions (70, 90 and 110 rpm, each at 180 and 300 W), for 2 min each, using three chainrings of different ovalities (1.0–1.215). Kinematic data and pedal forces were collected. For most conditions, only the chainring with the highest ovality (1.215) was characterised by smaller sagittal knee joint moments, smaller relative sagittal knee joint power contribution and larger relative sagittal hip joint power contribution, which suggests a change from maximising efficiency to maximising power production. Effect sizes increased with higher cadences, but not with higher workload. This study has application for athletes, clinicians and sports equipment industry as a non-circular chainring can change joint-specific power generation and decrease knee joint moment, but certain ovality seems to be necessary to provoke this effect.  相似文献   

4.
Besides its regulation by Union Cycliste Internationale, the evidence relating saddle setback to pedalling performance remains inconclusive. This study investigates the influence of saddle setback on pedalling effectiveness through two indexes: an index of pedalling force effectiveness and an index of pedalling work effectiveness. Eleven cyclists were assessed six saddle setback conditions while pedalling at a steady power output of 200 W and cadence of 90 rpm. A force sensor was integrated within the seat post to compute the centre of pressure on the saddle. From instrumented pedals, an index of force effectiveness (ratio between the force directed perpendicular to the crank arm and the total force applied to the pedal) and an index of work effectiveness (based on the minimisation of negative crank work) were calculated. In comparison with a forward position, sitting backward significantly decreased 5% cumulative total work, increased index of work effectiveness (84.2 ± 3.7 vs. 82.0 ± 4.7%), and increased index of force effectiveness (41.7 ± 2.9 vs. 39.9 ± 3.7 and 36.9 ± 0.7%). Thus, while it was previously reported that sitting more forward favours maximal power, this study demonstrates that it also leads to a decreased effectiveness in steady-state pedalling.  相似文献   

5.
聚焦跑步时髌股关节生物力学特征,探究穿着不同极简指数(MI)跑鞋对髌股关节接触力、应力等的即刻影响。选取15名习惯后跟着地的健康男性跑者,分别穿着两种MI跑鞋(MI 86%极简跑鞋和MI 26%缓冲跑鞋),使用Vicon红外运动捕捉系统、Kistler三维测力台同步采集3.33 m/s(速度变化范围±5%)跑速下的膝、踝关节运动学和地面反作用力,通过逆向动力学等计算股四头肌肌力、髌股关节接触力、髌股关节接触面积以及髌股关节接触应力。结果显示:两种跑鞋条件下的冲击力峰值和蹬地力峰值均无明显差异。与缓冲跑鞋相比,穿着极简跑鞋跑步时,膝关节最大屈曲角度显著降低(P<0.01);髌股关节接触面积显著减小(P<0.01);膝关节伸肌峰值力矩显著下降(P<0.01);髌股关节接触力和应力峰值均显著减小(P<0.05)。研究表明,相比缓冲跑鞋,穿着极简跑鞋在未影响触地后冲击力峰值的同时,通过降低伸膝力矩大幅度减少髌股关节接触力(下降17.02%)、降低髌股关节接触应力,从而有效改善支撑期髌股关节负荷,为进一步减小髌股关节疼痛综合征风险提供可能。  相似文献   

6.
Knee joint forces during downhill walking with hiking poles   总被引:1,自引:0,他引:1  
The aim of this study was to determine external and internal loads on the knee joint during downhill walking with and without hiking poles. Kinematic, kinetic and electromyographic data were collected from eight males during downhill walking on a ramp declined at 25 degrees. Planar knee joint moments and forces were calculated using a quasi-static knee model. The results were analysed for an entire pole-cycle as well as differentiated between single and double support phases and between each step of a pole-cycle. Significant differences between downhill walking with and without hiking poles were observed for peak and average magnitudes of ground reaction force, knee joint moment, and tibiofemoral compressive and shear forces (12-25%). Similar reductions were found in patellofemoral compressive force, the quadriceps tendon force and the activity of the vastus lateralis; however, because of a high variability, these differences were not significant. The reductions seen during downhill walking with hiking poles compared with unsupported downhill walking were caused primarily by the forces applied to the hiking poles and by a change in posture to a more forward leaning position of the upper body, with the effect of reducing the knee moment arm.  相似文献   

7.
Abstract

The effects of saddle height on pedal forces and joint kinetics (e.g. mechanical work) are unclear. Therefore, we assessed the effects of saddle height on pedal forces, joint mechanical work and kinematics in 12 cyclists and 12 triathletes. Four sub-maximal 2-min cycling trials (3.4 W/kg and 90 rpm) were conducted using preferred, low and high saddle heights (±10° knee flexion at 6 o'clock crank position from the individual preferred height) and an advocated optimal saddle height (25° knee flexion at 6 o'clock crank position). Right pedal forces and lower limb kinematics were compared using effect sizes (ES). Increases in saddle height (5% of preferred height, ES=4.6) resulted in large increases in index of effectiveness (7%, ES=1.2) at the optimal compared to the preferred saddle height for cyclists. Greater knee (11–15%, ES=1.6) and smaller hip (6–8%, ES=1.7) angles were observed at the low (cyclists and triathletes) and preferred (triathletes only) saddle heights compared to high and optimal saddle heights. Smaller hip angle (5%, ES=1.0) and greater hip range of motion (9%, ES=1.0) were observed at the preferred saddle height for triathletes compared to cyclists. Changes in saddle height up to 5% of preferred saddle height for cyclists and 7% for triathletes affected hip and knee angles but not joint mechanical work. Cyclists and triathletes would opt for saddle heights <5 and <7%, respectively, within a range of their existing saddle height.  相似文献   

8.
The purpose of this study was to compare the pedalling technique in road cyclists of different competitive levels. Eleven professional, thirteen elite and fourteen club cyclists were assessed at the beginning of their competition season. Cyclists’ anthropometric characteristics and bike measurements were recorded. Three sets of pedalling (200, 250 and 300 W) on a cycle ergometer that simulated their habitual cycling posture were performed at a constant cadence (~90 rpm), while kinetic and kinematic variables were registered. The results showed no differences on the main anthropometric variables and bike measurements. Professional cyclists obtained higher positive impulse proportion (1.5–3.3% and P < 0.05), mainly due to a lower resistive torque during the upstroke (15.4–28.7% and P < 0.05). They also showed a higher ankle range of movement (ROM, 1.1–4.0° and P < 0.05). Significant correlations (P < 0.05) were found between the cyclists’ body mass and the kinetic variables of pedalling: positive impulse proportion (r = ?0.59 to ?0.61), minimum (r = ?0.59 to ?0.63) and maximum torques (r = 0.35–0.47). In conclusion, professional cyclists had better pedalling technique than elite and club cyclists, because they opted for enhancing pulling force at the recovery phase to sustain the same power output. This technique depended on cycling experience and level of expertise.  相似文献   

9.
We evaluated the efficacy of an in-field gait retraining programme using mobile biofeedback to reduce cumulative and peak tibiofemoral loads during running. Thirty runners were randomised to either a retraining group or control group. Retrainers were asked to increase their step rate by 7.5% over preferred in response to real-time feedback provided by a wrist mounted running computer for 8 routine in-field runs. An inverse dynamics driven musculoskeletal model estimated total and medial tibiofemoral joint compartment contact forces. Peak and impulse per step total tibiofemoral contact forces were immediately reduced by 7.6% and 10.6%, respectively (P < 0.001). Similarly, medial tibiofemoral compartment peak and impulse per step tibiofemoral contact forces were reduced by 8.2% and 10.6%, respectively (P < 0.001). Interestingly, no changes were found in knee adduction moment measures. Post gait retraining, reductions in medial tibiofemoral compartment peak and impulse per step tibiofemoral contact force were still present (P < 0.01). At the 1-month post-retraining follow-up, these reductions remained (P < 0.05). With these per stance reductions in tibiofemoral contact forces in mind, cumulative tibiofemoral contact forces did not change due to the estimated increase in number of steps to run 1 km.  相似文献   

10.
Technique changes in cyclists are not well described during exhaustive exercise. Therefore the aim of the present study was to analyze pedaling technique during an incremental cycling test to exhaustion. Eleven cyclists performed an incremental cycling test to exhaustion. Pedal force and joint kinematics were acquired during the last three stages of the test (75%, 90% and 100% of the maximal power output). Inverse dynamics was conducted to calculate the net joint moments at the hip, knee and ankle joints. Knee joint had an increased contribution to the total net joint moments with the increase of workload (5–8% increase, p < 0.01). Total average absolute joint moment and knee joint moment increased during the test (25% and 39%, for p < 0.01, respectively). Increases in plantar flexor moment (32%, p < 0.01), knee (54%, p < 0.01) and hip flexor moments (42%, p = 0.02) were found. Higher dorsiflexion (2%, for p = 0.03) and increased range of motion (19%, for p = 0.02) were observed for the ankle joint. The hip joint had an increased flexion angle (2%, for p < 0.01) and a reduced range of motion (3%, for p = 0.04) with the increase of workload. Differences in joint kinetics and kinematics indicate that pedaling technique was affected by the combined fatigue and workload effects.  相似文献   

11.
ABSTRACT

The main purpose of this study was to assess the acute effects of small changes in crank length (assumable by competitive cyclists) on metabolic cost and pedalling technique during submaximal cycling. Twelve amateur road cyclists performed three sets of submaximal pedalling (150, 200 and 250 W) at a constant cadence (91.3 ± 0.8 rpm) in a randomised order with three commonly used crank lengths, preferred (172.5–175 mm), +5 mm and ?5 mm. Energy cost of pedalling, kinetic and kinematic variables were simultaneously registered. Changes in crank length had no significant effect on heart rate (144 ± 13, 145 ± 12 and 145 ± 13 bpm, respectively) and gross efficiency (GE) (20.4 ± 2.1, 20.1 ± 2.2 and 20.3 ± 2.4%, respectively). A longer crank induced a significant (P < 0.05) reduction of positive impulse proportion (PIP) (0.9–1.9%) due to a greater maximum (1.0–2.3 N · m) and minimum torque (1.0–2.2 N · m). At the same time, the maximum flexion and range of motion of the hip and knee joints were significantly increased (1.8–3.4° and P < 0.05), whereas the ankle joint was not affected. In conclusion, the biomechanical changes due to a longer crank did not alter the metabolic cost of pedalling, although they could have long-term adverse effects. Therefore, in case of doubt between two lengths, the shorter one might be recommended.  相似文献   

12.
An analytical biomechanical model was developed to establish the relevant properties of the Smith squat exercise, and the main differences from the free barbell squat. The Smith squat may be largely patterned to modulate the distributions of muscle activities and joint loadings. For a given value of the included knee angle (θ(knee)), bending the trunk forward, moving the feet forward in front of the knees, and displacing the weight distribution towards the forefoot emphasizes hip and lumbosacral torques, while also reducing knee torque and compressive tibiofemoral and patellofemoral forces (and vice versa). The tibiofemoral shear force φ(t) displays more complex trends that strongly depend on θ(knee). Notably, for 180° ≥ θ(knee) ≥ 130°, φ(t) and cruciate ligament strain forces can be suppressed by selecting proper pairs of ankle and hip angles. Loading of the posterior cruciate ligament increases (decreases) in the range 180° ≥ θ(knee) ≥ 150° (θ(knee) ≤ 130°) with knee extension, bending the trunk forward, and moving the feet forward in front of the knees. In the range 150° > θ(knee) > 130°, the behaviour changes depending on the foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are explained. This work enables careful use of the Smith squat in strengthening and rehabilitation programmes.  相似文献   

13.
This study aimed to establish the nature of lower extremity intra-limb coordination variability in cycling and to investigate the coordinative adaptations that occur in response to changes in cadence and work rate. Six trained and six untrained males performed nine pedalling bouts on a cycle ergometer at various cadences and work rates (60, 90, and 120 revolutions per minute (rpm) at 120, 210, and 300W). Three-dimensional kinematic data were collected and flexion/extension angles of the ankle, knee, and hip joints were subsequently calculated. These data were used to determine two intra-limb joint couplings [hip flexion/extension-knee flexion/extension (HK) and knee flexion/extension-ankle plantar-flexion/dorsi-flexion (KA)], which were analysed using continuous relative phase analysis. Trained participants displayed significantly (p < 0.05) lower coordination variability (6.6 +/- 4.0 degrees) than untrained participants (9.2 +/- 4.7 degrees). For the trained subjects, the KA coupling displayed significantly more in-phase motion in the 120 rpm (19.2 +/- 12.3 degrees) than the 60 (30 +/- 7.1 degrees) or 90 rpm (33.1 +/- 7.4 degrees) trials and the HK coupling displayed significantly more in-phase motion in the 90 (33.3 +/- 3.4 degrees) and 120 rpm (27.9 +/- 13.6 degrees) than in the 60 rpm trial (36.4 +/- 3.5 degrees). The results of this study suggest that variability may be detrimental to performance and that a higher cadence is beneficial. However, further study of on-road cycling is necessary before any recommendations can be made.  相似文献   

14.
The effective force applied on the crank, the index of pedalling effectiveness, and the economy of movement at 60, 75, 90, and 105 rev/min cadences were examined in nine cyclists and eight triathletes. Tests were performed on two days. Maximal oxygen uptake was measured and the second ventilatory threshold was estimated on day 1 using a stationary bicycle. On day 2, the four different cadences were tested at about 5% below the second ventilatory threshold. A strain gauge instrumented clip-less pedal mounted on the bicycle enabled us to measure the normal and tangential forces exerted on the pedal, while the pedal and crank angles were monitored with the aid of a video system. Based on this information, the effective force and the index of pedalling effectiveness were calculated. Cyclists produced significantly more effective force and a higher index of pedalling effectiveness at 60 and 75 rev/min and were significantly more economic at all cadences than triathletes. The significant and positive correlation between effective force and economy at all cadences suggests that improvement of the effective force would reflect on economy.  相似文献   

15.
Effective force and economy of triathletes and cyclists   总被引:1,自引:0,他引:1  
The effective force applied on the crank, the index of pedalling effectiveness, and the economy of movement at 60, 75, 90, and 105 rev/min cadences were examined in nine cyclists and eight triathletes. Tests were performed on two days. Maximal oxygen uptake was measured and the second ventilatory threshold was estimated on day 1 using a stationary bicycle. On day 2, the four different cadences were tested at about 5% below the second ventilatory threshold. A strain gauge instrumented clip-less pedal mounted on the bicycle enabled us to measure the normal and tangential forces exerted on the pedal, while the pedal and crank angles were monitored with the aid of a video system. Based on this information, the effective force and the index of pedalling effectiveness were calculated. Cyclists produced significantly more effective force and a higher index of pedalling effectiveness at 60 and 75 rev/min and were significantly more economic at all cadences than triathletes. The significant and positive correlation between effective force and economy at all cadences suggests that improvement of the effective force would reflect on economy.  相似文献   

16.
Abstract

Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R 2 = 0.937 ± 0.050), anterior tibial translation (R 2 = 0.916 ± 0.059), and internal tibial rotation (R 2 = 0.831 ± 0.141) than medial tibial force (R 2 = 0.677 ± 0.193) and valgus joint rotation (R 2 = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation.  相似文献   

17.
Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2–14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: ?9.9 ± 0.9, hFF-FFS: ?9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one’s SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.  相似文献   

18.
Although the link between sagittal plane motion and exercise intensity has been highlighted, no study assessed if different workloads lead to changes in three-dimensional cycling kinematics. This study compared three-dimensional joint and segment kinematics between competitive and recreational road cyclists across different workloads. Twenty-four road male cyclists (12 competitive and 12 recreational) underwent an incremental workload test to determine aerobic peak power output. In a following session, cyclists performed four trials at sub-maximal workloads (65, 75, 85 and 95% of their aerobic peak power output) at 90?rpm of pedalling cadence. Mean hip adduction, thigh rotation, shank rotation, pelvis inclination (latero-lateral and anterior–posterior), spine inclination and rotation were computed at the power section of the crank cycle (12 o'clock to 6 o'clock crank positions) using three-dimensional kinematics. Greater lateral spine inclination (p?p?p?相似文献   

19.
The aim of this study was to analyse the effect of pedalling rate on the pattern of mechanical torque application and on neuromuscular fatigue during prolonged cycling exercise. Eleven well-trained individuals performed three 1-h pedalling sessions, at 50 rev?·?min?1, 110 rev?·?min?1 and a freely chosen cadence, at an intensity corresponding to 65% of their maximal aerobic power. The mechanical torque applied on the right pedal was recorded for 30?s every 5?min while pedalling. Contractile and neural properties of the quadriceps and hamstring muscles were analysed before and immediately after each of the three pedalling sessions. The post-exercise reduction in knee extensors maximal voluntary contraction was significant (P <?0.01) irrespective of the cadence, but no difference was found between cadences. The use of a particular cadence did not lead to preferentially central or peripheral fatigue. An increase in cadence resulted in greater positive and negative work generated during pedalling. The mechanical pattern was not altered during the exercise, whatever the selected cadence. The present study demonstrates that despite the occurrence of neuromuscular fatigue, trained individuals maintained a stable pedalling pattern throughout an endurance cycling exercise for cadences ranging from 50 to 110 rev?·?min?1.  相似文献   

20.
ABSTRACT

Previous studies have been limited to describe asymmetries during pedalling and suggest possible repercussion on performance and/or injury risks. However, few studies have presented strategies to mitigate asymmetries. The purpose of this study was to assess the effectiveness of a pedalling retraining intervention to reduce bilateral pedal force asymmetries. Twenty cyclists were assessed and 10 enrolled in a pedalling retraining method receiving visual and verbal feedback of pedal forces. The asymmetry index was computed for comparison of bilateral peak pedal forces and used during retraining (12 trials at 70% of peak power). Significantly larger asymmetry was observed for asymmetrical cyclists at the first three trials (P < 0.01 and ES = 1.39), which was reduced when post-retraining was compared to measures from symmetrical cyclists (P = 0.69 and ES = 0.18). Cyclists with larger asymmetry (>20%) in bilateral pedal forces reduce their asymmetries using sessions of pedalling retraining and achieve asymmetry indices similar to symmetrical cyclists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号