首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students’ science achievement and conceptual understanding in the domain of state changes of water, focusing on the concepts of evaporation and condensation. A pretest-posttest design was used that involved 208 third-grade students assigned to the three learning conditions. A science achievement test and a two-tier conceptual test were administered to students before and after a teaching intervention. The results revealed that using virtual preceding physical manipulatives and virtual manipulatives alone enhanced students’ knowledge gains about evaporation and condensation greater than the use of physical laboratory activities alone. It was also found that the combination environment promoted students’ knowledge gains about these concepts equally well as the use of virtual laboratory activities alone. On the other hand, the results showed that using virtual preceding physical manipulatives promoted students’ conceptual understanding most efficiently compared to the use of either physical or virtual manipulatives alone; in contrast, experimenting with physical manipulatives alone was least influential for students’ conceptual understanding compared to the other manipulatives.  相似文献   

2.
The purpose of this pilot study with a within-subject design was to gain a deeper understanding about the promise and restrictions of a virtual tutoring system designed to teach science to first grade students in Finland. Participants were 61 students who received six tutoring science sessions of approximately 20 min each. Sessions consisted of a sequence of narrated multimedia science presentations during which a virtual tutor explained science phenomena displayed in pictures. Narrated science explanations were followed by one or more multiple choice questions with immediate feedback about students’ choices and a possible second attempt, during which students reached 97% accuracy. A pretest and posttest was administered to assess students’ ability to reason about the science and to transfer knowledge to new contexts. Results indicated significantly greater improvement in the understanding of the science concepts taught during the tutoring sessions, relative to the concepts that were not taught. Results from the surveys administered to teachers and students indicated that the program was well received. Detailed analysis of student error responses provided a deeper understanding about the complex interplay between students’ prior knowledge, the way topics were taught in the multimedia lessons, and the way learning was assessed. Findings from the quantitative and qualitative analyses are discussed in the context of designing high quality lessons delivered through a virtual tutoring system.  相似文献   

3.
In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.  相似文献   

4.
In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.  相似文献   

5.
Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an alternative or supplement to these traditional hands-on labs. However, physics professors may be very hesitant to give up the hands-on labs, which have been such a central part of their courses, for a more cost and time-saving virtual alternative. Thus, it is important to investigate how the learning from these virtual experiences compares to that acquired through a hands-on experience. This study evaluated a comprehensive set of virtual labs for introductory level college physics courses and compared them to a hands-on physics lab experience. Each of the virtual labs contains everything a student needs to conduct a physics laboratory experiment, including: objectives, background theory, 3D simulation, brief video, data collection tools, pre- and postlab questions, and postlab quiz. This research was conducted with 224 students from two large universities and investigated the learning that occurred with students using the virtual labs either in a lab setting or as a supplement to hands-on labs versus a control group of students using the traditional hands-on labs only. Findings from both university settings showed the virtual labs to be as effective as the traditional hands-on physics labs.  相似文献   

6.
This study investigated the learning dimensions that occur in physical and virtual inquiry-based lab investigations, in first-year secondary chemistry classes. This study took place over a 2 year period and utilized an experimental crossover design which consisted of two separate trials of laboratory investigation. Assessment data and attitudinal data were gathered and analyzed to measure the instructional value of physical and virtual lab experiences in terms of student performance and attitudes. Test statistics were conducted for differences of means for assessment data. Student attitudes towards virtual experiences in comparison to physical lab experiences were measured using a newly created Virtual and Physical Experimentation Questionnaire (VPEQ). VPEQ was specifically developed for this study, and included new scales of Usefulness of Lab, and Equipment Usability which measured attitudinal dimensions in virtual and physical lab experiences. A factor analysis was conducted for questionnaire data, and reliability of the scales and internal consistency of items within scales were calculated. The new scales were statistically valid and reliable. The instructional value of physical and virtual lab experiences was comparable in terms of student performance. Students showed preference towards the virtual medium in their lab experiences. Students showed positive attitudes towards physical and virtual experiences, and demonstrated a preference towards inquiry-based experiences, physical or virtual. Students found virtual experiences to have higher equipment usability as well as a higher degree of open-endedness. In regards to student access to inquiry-based lab experiences, virtual and online alternatives were viewed favorably by students.  相似文献   

7.
8.
This article illustrates the utility of using virtual environments to transform social interaction via behavior and context, with the goal of improving learning in digital environments. We first describe the technology and theories behind virtual environments and then report data from 4 empirical studies. In Experiment 1, we demonstrated that teachers with augmented social perception (i.e., receiving visual warnings alerting them to students not receiving enough teacher eye gaze) were able to spread their attention more equally among students than teachers without augmented perception. In Experiments 2 and 3, we demonstrated that by breaking the rules of spatial proximity that exist in physical space, students can learn more by being in the center of the teacher's field of view (compared to the periphery) and by being closer to the teacher (compared to farther away). In Experiment 4, we demonstrated that inserting virtual co-learners who were either model students or distracting students changed the learning abilities of experiment participants who conformed to the virtual co-learners. Results suggest that virtual environments will have a unique ability to alter the social dynamics of learning environments via transformed social interaction.  相似文献   

9.
ABSTRACT

Physical and virtual experimentation are thought to have different affordances for supporting students’ learning. Research investigating the use of physical and virtual experiments to support students’ learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students’ learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students’ (N?=?100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n?=?55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n?=?45), with the opposite sequence. Repeated measures ANOVA’s were conducted to examine how physical and virtual labs impacted students’ learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.  相似文献   

10.
Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real world, which can generate specific problems in laboratory classes. Current proposals of virtual labs (VL) and remote labs (RL) do not either cover new needs properly or contribute remarkable improvement to traditional labs??except that they favor distance training. Therefore, online teaching and learning in lab practices demand a further step beyond current VL and RL. This paper poses a new reality and new teaching/learning concepts in the field of lab practices in engineering. The developed augmented reality-based lab system (augmented remote lab, ARL) enables teachers and students to work remotely (Internet/intranet) in current CL, including virtual elements which interact with real ones. An educational experience was conducted to assess the developed ARL with the participation of a group of 10 teachers and another group of 20 students. Both groups have completed lab practices of the contents in the subjects Digital Systems and Robotics and Industrial Automation, which belong to the second year of the new degree in Electronic Engineering (adapted to the European Space for Higher Education). The labs were carried out by means of three different possibilities: CL, VL and ARL. After completion, both groups were asked to fill in some questionnaires aimed at measuring the improvement contributed by ARL relative to CL and VL. Except in some specific questions, the opinion of teachers and students was rather similar and positive regarding the use and possibilities of ARL. Although the results are still preliminary and need further study, seems to conclude that ARL remarkably improves the possibilities of current VL and RL. Furthermore, ARL can be concluded to allow further possibilities when used online than traditional laboratory lessons completed in CL.  相似文献   

11.
Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in the roles of scientists conducting investigations. This design experiment examined if augmented reality simulation games can be used to help students understand science as a social practice, whereby inquiry is a process of balancing and managing resources, combining multiple data sources, and forming and revising hypotheses in situ. We provide 4 case studies of secondary environmental science students participating in the program. Positioning students in virtual investigations made apparent their beliefs about science and confronted simplistic beliefs about the nature of science. Playing the game in “real” space also triggered students' preexisting knowledge, suggesting that a powerful potential of augmented reality simulation games can be in their ability to connect academic content and practices with students' physical, lived worlds. The game structure provided students a narrative to think with, although students differed in their ability to create a coherent narrative of events. We argue that Environmental Detectives is 1 model for helping students understand the socially situated nature of scientific practice.  相似文献   

12.
SciEthics Interactive: science and ethics learning in a virtual environment   总被引:1,自引:0,他引:1  
Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of ethical dilemmas. The 2 year development process is examined through the lens of the rapid prototyping instructional design model, following the project from conceptualization to implementation of a 3D simulation. Through expert interviews, focus groups, and working groups, we were able to determine critical scientific and ethical issues to present to learners in the virtual world. We collected data on 53 students using the simulation at universities in the United States and South Africa and evaluated their experience using qualitative and quantitative methods. Results showed that student participants were engaged and motivated by the simulation. The students reported an increase in science knowledge and ethical understanding, but individual experiences varied.  相似文献   

13.
Marine education comprises rich and multifaceted issues. Raising general awareness of marine environments and issues demands the development of new learning materials. This study adapts concepts from digital game-based learning to design an innovative marine learning program integrating augmented reality (AR) technology for lower grade primary school students. The proposed activity integrates physical and virtual learning materials, encouraging students to engage in an interactive learning environment that makes learning fun and interesting. The program introduces Taiwan’s marine ecology and water resources. To assess learners’ engagement, a quasi-experimental research design was used, where the participant pool consisted of 51 primary school students in Taiwan. Results indicate that (1) students were highly confident by the learning activities and viewed them satisfactorily, (2) students acquired the target knowledge, and (3) the innovative learning program specifically helps low academic achievers improve learning performance.  相似文献   

14.
Reading has been regarded as a medium for learning science, revealing the importance of enhancing learners’ reading competence in science education. The critical features of science texts are their multiple representations, such as text and visual elements, which assist the representation of science concepts. A multimedia learning environment can present relevant materials in various formats and help students to process the materials in meaningful ways, for example, by integrating learning materials with relevant prior concepts, and organizing them into a consistent and coherent cognitive structure. However, some issues with multimedia instructional design have been proposed, such as students’ cognitive load and learning motivations. In this study, an augmented reality-based science learning system was developed based on the contiguity principle of multimedia learning in order to promote students’ science learning. Moreover, an experiment was conducted on a natural science course in an elementary school to assess the effectiveness of the implemented system on students’ learning. The experimental results display that the students learning with this approach found made significant gains in their learning achievements and motivations compared to those learning science with conventional multimedia science learning; moreover, their perceptions of extraneous cognitive load were significantly reduced during the learning activity.  相似文献   

15.
针对燃烧学课程理论教学中存在概念难理解、现象直观性差和缺少前沿科学等问题,在实验教学中开展了虚实结合的教学模式。开设了层流预混火焰、射流扩散火焰及水煤浆滴的实物实验;利用当前科研成果,开发了采用旋流、直流和W火焰煤粉燃烧技术的火电站锅炉的虚拟仿真试验。在经济、环保和有限的学时内,保证实验内容的全面性和系统性,促进能源动力专业实验与学科科学研究的深度融合,使学生接触学科前沿科学问题。教学实践证明,采用虚实结合的教学模式后,学生的专业兴趣和创新意识明显提高。  相似文献   

16.
ABSTRACT

Although there has been some success with programmes that aim to increase STEM involvement by women and underserved minorities, science educators continue to seek ways to promote students’ interest in STEM. This study builds on social cognitive career theory (SCCT) and the theory of enclothed cognition to assess the impact of wearing lab coats on 5th-grade students. Students were assigned to a treatment group (that wore lab coats, n = 106) or a control group (that did not wear lab coats, n = 110) for 10 science classes taught by their classroom science teacher. Students were assessed pre and post to the intervention with a survey designed to measure science interest, recognition from others as a science person, science self-efficacy, and STEM career goals. Results showed students’ interest in science was not significantly changed due to wearing the lab coat, but the lab coats did have significant effects on students’ perceived recognition by others as being a science learner. Furthermore, those treatment students with low self-efficacy (compared to those with high self-efficacy) and those with who did not report having access to a parent with a STEM career had significant increases in perceptions of self-efficacy in science.  相似文献   

17.
为使学生自主设置实验条件、节约实习经费,结合云教育平台和虚拟现实技术,提出一种新颖的虚拟实验室环境构建方法。首先,利用云计算技术搭建云教育数据中心,并配置应用程序和用户终端服务;其次,通过虚拟现实技术创建虚拟实验室场景,主要包括虚拟教师人物、虚拟仪器设备和虚拟实验工具;然后,将虚拟机实验室资源转化为云服务资源,同时整合云教育平台的优势;最后,学生通过云终端进入虚拟实验环境。测试结果表明,基于云教育平台构建的虚拟实验室具有较高的使用价值。  相似文献   

18.
LabVIEW是一种在工业制造、工程设计和物理学等领域普遍应用的虚拟仪器开发的标准工具,将LabWIEW引入基础物理实验的课堂,是实验教学的新尝试。通过基于LabVIEW的物理实验,改变了学生学习过程中实践环节薄弱、动手能力不强的现状,强化了学生的创新意识,使学生的整体素质得到提高。  相似文献   

19.
Inquiry-based learning allows students to learn about scientific phenomena in an exploratory way. Inquiry-based learning can take place in online environments in which students read informational texts and experiment in virtual labs. We conducted two studies using eye-tracking to examine the integration of these two sources of information for students from vocational education (78 and 71 participants, respectively, mean age of 13 years and 7 months). In Study 1, we examined whether the amount of time spent on reading text and on integrating the text content with information from a virtual lab (as measured via gaze switches between the text and the lab) affected the quality of the inquiry-based learning process in the lab (i.e., correctly designed experiments and testable hypotheses created) and the learning gain (increase in domain knowledge from pretest to posttest). Results showed, on average, a gain in domain knowledge. Pretest scores were related to posttest scores, and this relation was mediated by the score for correctly designed experiments in the lab. There was no relation between informational text reading time and inquiry process quality or learning gain, but more frequent integration was associated with a higher score for experimentation in the virtual lab, and more frequent integration attenuated the relation between pretest score and designing correct experiments. Integration could thus compensate for the negative effects of lower prior knowledge. In Study 2, we examined whether integration was stimulated by highlighting correspondences between the informational text and the virtual lab (i.e., signaling). Integration was higher than in Study 1, but this did not further improve the quality of the inquiry process or the learning gain. A general conclusion is that integration fosters inquiry-based learning, but that stimulating additional integration may not result in further improvement.  相似文献   

20.
非生物学专业公选课生命科学基础实验的基本目的是引导学生学习科学研究的基本思路与实践方法.研究如何转变传统的教学理念,在普及基本知识和训练基本实验技能中,整合适当的探索性研究内容.通过围绕着一些重要的生命科学概念建设不同的探索性实验项目,如实地考察全国示范性工程的深圳市湿地生态保护工程,使学生主动学习,深化、扩展、整合各种相关知识.学生们通过课程学习,不仅得到生命学科基本知识普及与基础技能训练,而且能够改善其批判性思考、综合性分析和进行科学交流能力,从而成为具有创新性思维并持续终生学习、勇于应对将来各种科学和人文挑战的新型人才.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号