首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article discusses mechanisms and principles for assignment of moral responsibility to intelligent robots, with special focus on military robots. We introduce the concept autonomous power as a new concept, and use it to identify the type of robots that call for moral considerations. It is furthermore argued that autonomous power, and in particular the ability to learn, is decisive for assignment of moral responsibility to robots. As technological development will lead to robots with increasing autonomous power, we should be prepared for a future when people blame robots for their actions. It is important to, already today, investigate the mechanisms that control human behavior in this respect. The results may be used when designing future military robots, to control unwanted tendencies to assign responsibility to the robots. Independent of the responsibility issue, the moral quality of robots’ behavior should be seen as one of many performance measures by which we evaluate robots. How to design ethics based control systems should be carefully investigated already now. From a consequentialist view, it would indeed be highly immoral to develop robots capable of performing acts involving life and death, without including some kind of moral framework.  相似文献   

2.
Luck (2009) argues that gamers face a dilemma when it comes to performing certain virtual acts. Most gamers regularly commit acts of virtual murder, and take these acts to be morally permissible. They are permissible because unlike real murder, no one is harmed in performing them; their only victims are computer-controlled characters, and such characters are not moral patients. What Luck points out is that this justification equally applies to virtual pedophelia, but gamers intuitively think that such acts are not morally permissible. The result is a dilemma: either gamers must reject the intuition that virtual pedophelic acts are impermissible and so accept partaking in such acts, or they must reject the intuition that virtual murder acts are permissible, and so abstain from many (if not most) extant games. While the prevailing solution to this dilemma has been to try and find a morally relevant feature to distinguish the two cases, I argue that a different route should be pursued. It is neither the case that all acts of virtual murder are morally permissible, nor are all acts of virtual pedophelia impermissible. Our intuitions falter and produce this dilemma because they are not sensitive to the different contexts in which games present virtual acts.  相似文献   

3.
I examine the nature of human-robot pet relations that appear to involve genuine affective responses on behalf of humans towards entities, such as robot pets, that, on the face of it, do not seem to be deserving of these responses. Such relations have often been thought to involve a certain degree of sentimentality, the morality of which has in turn been the object of critical attention (Sparrow in Ethics Inf Technol 78:346–359, 2002; Blackford in Ethics Inf Technol 14:41–51, 2012). In this paper, I dispel the claim that sentimentality is involved in this type of relations. My challenge draws on literature in the philosophy of art and in cognitive science that attempts to solve the so called paradox of fictional emotions, i.e., the seemingly paradoxical way in which we respond emotionally to fictional or imaginary characters and events. If sentimentality were not at issue, neither would its immorality. For the sake of argument, however, I assume in the remaining part of the paper that sentimentality is indeed at play and bring to the fore aspects of its badness or viciousness that have not yet been discussed in connection with robot pets. I conclude that not even these aspects of sentimentality are at issue here. Yet, I argue that there are other reasons to be worried about the wide-spread use of ersatz companionship technology that have to do with the potential loss of valuable, self-defining forms of life.  相似文献   

4.
In this research, we are interested in ERP systems which are common information repositories that are aimed at matching the knowledge, practices, and skills that drive the organization in the best possible way. Can the cognitive and hierarchical models coexist within the same project? What is the impact of ERP on the interconnection between communities? To answer these questions, we rely in particular on the work of Levina and Vaast (MIS Quarterly 29(2):335–363, 2005), which underlines that the modes of interaction between CPs must be mediated by the activation of boundary objects and/or the mobilization of boundary spanners. Finally, this leads us to discriminate between two types of ERPPs (hierarchical/cognitive) and to underline the role of the switch in the ERPP success.  相似文献   

5.
Research has shown that university technology transfer offices (TTOs) learn through experimentation and failure, and by sharing these experiences with others. There are many barriers to successfully sharing the best practice between TTOs. The Maturity Model (MM) created by Secundo et al. (Meas Bus Excell, 20:42–54, 2016) provides a means by which the performance of a TTO can be better understood to allow for effective sharing of best practices. The aim of this study is to improve and validate the MM to formalize a mechanism through which best practices can be identified and shared between TTOs. This was accomplished by testing the MM in 54 TTOs across Europe and the United Kingdom. Findings regard several improvements of the intangible indicators and the maturity levels of the MM. This research improves the rigor of the MM and formalizes its application as a mechanism for sharing best practices through the Improved MM.  相似文献   

6.
Recent rapid advances in Artificial Intelligence (AI) and Machine Learning have raised many questions about the regulatory and governance mechanisms for autonomous machines. Many commentators, scholars, and policy-makers now call for ensuring that algorithms governing our lives are transparent, fair, and accountable. Here, I propose a conceptual framework for the regulation of AI and algorithmic systems. I argue that we need tools to program, debug and maintain an algorithmic social contract, a pact between various human stakeholders, mediated by machines. To achieve this, we can adapt the concept of human-in-the-loop (HITL) from the fields of modeling and simulation, and interactive machine learning. In particular, I propose an agenda I call society-in-the-loop (SITL), which combines the HITL control paradigm with mechanisms for negotiating the values of various stakeholders affected by AI systems, and monitoring compliance with the agreement. In short, ‘SITL = HITL + Social Contract.’  相似文献   

7.

Using Layder's domain theory (1997) Layder, D. 1997. Modern social theory:Key debates and new directions, London: UCL Press.  [Google Scholar] as an analytical framework, this article shows how the information society can be measured through various levels of society. Layder's notions of psychobiography, situated activity, social setting, and contextual resources help identify cultural and social indicators for understanding changes in the information society. With the help of empirical indicators for each domain, this article uses the case of Estonia to show that there is often more to the information society than what is captured by traditional measures. This article calls for a context-sensitive approach, which takes into consideration social and cultural indicators. Measurements from all four domains are necessary for understanding the complexity of information-society-related issues.  相似文献   

8.
A flow redirection and single cell immobilization method in a microfluidic chip is presented. Microheaters generated localized heating and induced poly(N-isopropylacrylamide) phase transition, creating a hydrogel that blocked a channel or immobilized a single cell. The heaters were activated in sets to redirect flow and exchange the fluid in which an immobilized cell was immersed. A yeast cell was immobilized in hydrogel and a 4′,6-diamidino-2-phenylindole (DAPI) fluorescent stain was introduced using flow redirection. DAPI diffused through the hydrogel and fluorescently labelled the yeast DNA, demonstrating in situ single cell biochemistry by means of immobilization and fluid exchange.The ability to control microfluidic flow is central to nearly all lab-on-a-chip processes. Recent developments in microfluidics either include microchannel based flow control in which microvalves are used to control the passage of fluid,1 or are based on discrete droplet translocation in which electric fields or thermal gradients are used to determine the droplet path.2, 3 Reconfigurable microfluidic systems have certain advantages, including the ability to adapt downstream fluid processes such as sorting to upstream conditions and events. This is especially relevant for work with individual biomolecules and high throughput cell sorting.4 Additionally, reconfigurable microfluidic systems allow for rerouting flows around defective areas for high device yield or lifetime and for increasing the device versatility as a single chip design can have a variety of applications.Microvalves often form the basis of flow control systems and use magnetic, electric, piezoelectric, and pneumatic actuation methods.5 Many of these designs require complicated fabrication steps and can have large complex structures that limit the scalability or feasability of complex microfluidic systems. Recent work has shown how phase transition of stimuli-responsive hydrogels can be used to actuate a simple valve design.6 Beebe et al. demonstrated pH actuated hydrogel valves.7 Phase transition of thermosensitive poly(N-isopropylacrylamide) (PNIPAAm) using a heater element was demonstrated by Richter et al.8 Phase transition was also achieved by using light actuation by Chen et al.9 Electric heating has shown a microflow response time of less than 33 ms.11 Previous work10 showed the use of microheaters to induce a significant shift in the viscosity of thermosensitive hydrogel to block microchannel flow and deflect a membrane, stopping flow in another microchannel. Additionally, Yu et al.12 demonstrated thermally actuated valves based on porous polymer monoliths with PNIPAAm. Krishnan and Erickson13 showed how reconfigurable optically actuated hydrogel formation can be used to dynamically create highly viscous areas and thus redirect flow with a response time of  ~ 2?s. This process can be used to embed individual biomolecules in hydrogel and suppress diffusion as also demonstrated by others.15, 16 Fiddes et al.14 demonstrated the use of hydrogels to transport immobilized biomolecules in a digital microfluidic system. While the design of Krishnan and Erickson is highly flexible, it requires the use of an optical system and absorption layer to generate a geometric pattern to redirect flow.This paper describes the use of an array of gold microheaters positioned in a single layer polydimethylsiloxane (PDMS) microfluidic network to dynamically control microchannel flow of PNIPAAm solution. Heat generation and thus PNIPAAm phase transition were localized as the microheaters were actuated using pulse width modulation (PWM) of an applied electric potential. Additionally, hydrogel was used to embed and immobilise individual cells, exchange the fluid parts of the microfluidic system in order to expose the cells to particular reagents to carry out an in situ biochemical process. The PDMS microchannel network and the microheater array are shown in Figure Figure11.Open in a separate windowFigure 1A sketch of the electrical circuit and a microscope image of the gold microheaters and the PDMS microchannels. The power to the heaters was modulated with a PWM input through a H-bridge. For clarity, the electrical circuit for only the two heaters with gelled PNIPAAm is shown (H1 and V2). There are four heaters (V1-V4) in the “vertical channels” and three heaters (H1-H3) in the “horizontal” channel.The microchannels were fabricated using a patterned mould on a silicon wafer to define PDMS microchannels, as described by DeBusschere et al.17 and based on previous work.10 A 25 × 75 mm glass microscope slide served as the remaining wall of the microchannel system as well as the substrate for the microheater array. The gold layer had a thickness of 200 nm and was deposited and patterned using E-beam evaporation and photoresist lift-off.21 The gold was patterned to function as connecting electrical conductors as well as the microheaters.It was crucial that the microheater array was aligned with an accuracy of  ~ 20μm with the PDMS microchannel network for good heat localization. The PDMS and glass lid were treated with plasma to activate the surface and alignment was carried out by mounting the microscope slide onto the condenser lens of an inverted microscope (TE-2000 Nikon Instruments). While imaging with a 4× objective, the x, y motorized stage aligned the microchannels to the heaters and the condenser lens was lowered for the glass substrate to contact the PDMS and seal the microchannels.Local phase transition of 10% w/w PNIPAAm solution in the microchannels was achieved by applying a 7 V potential through a H-bridge that received a PWM input at 500 Hz which was modulated using a USB controller (Arduino Mega 2650) and a matlab (Mathworks) GUI. The duty cycle of the PWM input was calibrated for each microheater to account for differences in heater resistances (25?Ω to 52?Ω) due to varying lengths of on-chip connections and slight fabrication inconsistencies, as well as for different flow conditions during device operation. Additionally, thermal cross-talk between heaters required decreasing the PWM input significantly when multiple heaters were activated simultaneously. This allowed confining the areas of cross-linked PNIPAAm to the microheaters, allowing the fluid in other areas to flow freely.By activating the heaters in sets, it was possible to redirect the flow and exchange the fluid in the central area. Figure Figure22 demonstrates how the flow direction in the central microchannel area was changed from a stable horizontal flow to a stable vertical flow with a 3 s response time, using only PNIPAAm phase transition. Constant pressures were applied to the inlets to the horizontal channel and to the vertical channels. Activating heaters V1-4 (Figure (Figure2,2, left) resulted in flow in the horizontal channel only. Likewise, activating heaters H1 and H2 allowed for flow in the vertical channel only. In this sequence, the fluid in the central microchannel area from one inlet was exchanged with fluid from the other inlet. Additionally, by activating heater H3, a particle could be immobilised during the exchange of fluid as shown in Figure Figure33 (top).Open in a separate windowFigure 2Switching between fluid from the horizontal and the vertical channel using hydrogel activation and flow redirection with a response time of 3 s. A pressure of 25 mbar was applied to the inlet of the horizontal channel and a pressure of 20 mbar to the vertical channel. The flow field was determined using particle image velocimetry, in which the displacement of fluorescent seed particles was determined from image pairs generated by laser pulse exposure. Processing was carried out with davis software (LaVision).Open in a separate windowFigure 3A series of microscope images near heater H3 showing: (1a)-(1c) A single yeast cell captured by local PNIPAAm phase transition and immobilized for 5 min before being released. (2a) A single yeast cell was identified for capture by embedding in hydrogel. (2b) The cell as well as the hydrogel displayed fluorescence while embedded due to the introduction of DAPI in the surrounding region. (2c) The diffusion of DAPI towards the cell as the heating power of H3 is reduced after 15 min, showing a DAPI stained yeast cell immobilized.Particle immobilisation in hydrogel and fluid exchange in the central area of the microfluidic network were used to carry out an in situ biochemical process in which a yeast cell injected through one inlet was stained in situ with a 4′,6-diamidino-2-phenylindole (DAPI) solution (Invitrogen), which attached to the DNA of the yeast cell.18 A solution of yeast cells with a concentration of 5 × 107cells/ml suspended in a 10% w/w PNIPAAm solution was injected through the horizontal channel. A solution of 2μg/l DAPI in a 10% w/w PNIPAAm solution was injected through the vertical channel. A single yeast cell was identified and captured near the central heater, and by deactivating the heaters in the vertical channel, DAPI solution was introduced in the microchannels around the hydrogel. After immobilising the cell for 15 min, the heater was deactivated, releasing the cell in the DAPI solution. This process is shown in Figure Figure33 (bottom). The sequence of the heater activation and deactivation in order to immobilize the cell and exchange the fluid is outlined in the supplementary material.21Eriksen et al.15 demonstrated the diffusion of protease K in the porous hydrogel matrix,19 and it was therefore expected that DAPI fluorescent stain (molecular weight of 350 kDa, Ref. 20) would also diffuse. DAPI diffusion is shown in Figure 3(2b) in which the yeast cell shows fluorescence while embedded in the hydrogel. The yeast cell was released by deactivating the central heater and activating all the others to suppress unwanted flow in the microchannel. As a result, the single cell was fully immersed in the DAPI solution. Immobilization of a single cell allows for selection of a cell that exhibits a certain trait and introduction of a new fluid while maintaining the cell position in the field of view of the microscope such that a biochemical response can be imaged continuously.In summary, a microfluidic chip capable of local heating was used to induce phase transition of PNIPAAm to hydrogel, blocking microchannel flow, and thereby allowing for reconfigurable flow. Additionally, the hydrogel was used to embed and immobilise a single yeast cell. DAPI fluorescent stain was introduced using flow redirection, and it stained the immobilized cell, showing diffusion into the hydrogel. The versatile design of this microfluidic chip permits flow redirection, and is suitable to carry out in situ biochemical reactions on individual cells, demonstrating the potential of this technology for forming large-scale reconfigurable microfluidic networks for biochemical applications.  相似文献   

9.
We present a simple microchip device consisting of an overlaid pattern of micromagnets and microwells capable of capturing magnetically labeled cells into well-defined compartments (with accuracies >95%). Its flexible design permits the programmable deposition of single cells for their direct enumeration and pairs of cells for the detailed analysis of cell-cell interactions. This cell arraying device requires no external power and can be operated solely with permanent magnets. Large scale image analysis of cells captured in this array can yield valuable information (e.g., regarding various immune parameters such as the CD4:CD8 ratio) in a miniaturized and portable platform.The emergent need for point-of-care devices has spurred development of simplified platforms to organize cells across well-defined templates.1 These devices employ passive microwells, immunospecific adhesive islands, and electric, optical, and acoustic traps to manipulate cells.2–6 In contrast, magnetic templating can control the spatial organization of cells through its ability to readily program ferromagnetic memory states.7 While it has been applied to control the deposition of magnetic beads,8–13 it has not been used to direct the deposition of heterogeneous cell pairs, which may help provide critical insight into the function of single cells.14,15 As such, we developed a simple magnetographic device capable of arraying single cells and pairs of cells with high fidelity. We show this magnetic templating tool can use immunospecific magnetic labels for both the isolation of cells from blood and their organization into spatially defined wells.We used standard photolithographic techniques to fabricate the microchips (see supplementary material16). Briefly, an array of 10 × 30 μm cobalt micromagnets were patterned by a photolithographic liftoff process and overlaid with a pattern of dumbbell-shaped microwells formed in SU-8 photoresist (Fig. 1(a)). The micromagnets were designed to produce a predominantly vertical field in the microwells by aligning the ends of the micromagnet at the center of each well of the dumbbell. These features were deposited across an area of ≈400 mm2 (>50 000 well pairs per microchip) (Fig. 1(b)). Depending on the programmed magnetization state with respect to the external field, magnetic beads or cells were attracted to one pole and repelled by the other pole of each micromagnet, leading to a biased deposition (Fig. 1(c)).12Open in a separate windowFIG. 1.Magnetographic array for single cell analysis. (a) SEM image of the dumbbell-shaped well pairs for capturing magnetically labelled cells. (b) Photograph of the finished device. (c) An array of well pairs displaying a pitch of 60 × 120 μm before (top) and 10 min after the deposition of magnetic beads (bottom).To demonstrate the capability of the array to capture cells into a format amenable for rapid image processing, we organized CD3+ lymphocytes using only hand-held permanent magnets. We isolated CD3+ lymphocytes from blood via positive selection using anti-CD3 magnetic nanoparticles (EasySep™, STEMCELL Technologies) with purities confirmed by flow cytometry (97.8%; see supplementary material16). We then stained 1 × 106 CD3+ cells with anti-CD8 Alexa-488 and anti-CD4 Alexa-647 (5 μl of each antibody in 100 μl for 20 min; BD Bioscience) to determine the CD4:CD8 ratio, a prognostic ratio for assessing the immune system.17,18Variably spaced neodymium magnets (0.5 in. × 0.5 in. × 1 in.; K&J Magnetics, Inc.) were fixed on either side of the microchip to generate a tunable magnetic field (0–400 G; Fig. 2(a)). Using this setup, fluorescently labeled cells were deposited, and the populations of CD4+ and CD8+ cells were indiscriminately arrayed, imaged, and enumerated using ImageJ. The resulting CD4:CD8 ratio of 1.84 ± 0.18 (Fig. 2(b)) was confirmed by flow cytometry with a high correlation (5.4% difference; Fig. 2(c)), indicating the magnetographic microarray can pattern cells for the rapid and accurate assessment of critical phenotypical parameters without complex equipment (e.g., function generators or flow cytometers).Open in a separate windowFIG. 2.CD8 analysis of CD3+ lymphocytes. (a) Photograph of the magnetographic device activated by permanent magnets (covered with green tape). The CD4:CD8 ratio determined by the (b) magnetographic microarray and (c) and (d) flow cytometry was 1.84 and 1.74, respectively.More complex operations, such as the programmed deposition of cell pairs, can be achieved by leveraging the switchable, bistable magnetization of the micromagnets for the detailed studies of cell-cell interactions (Figs. 3(a)–3(d)).12 For these studies, a 200 G horizontal field generated from an electromagnetic coil was used to magnetize the micromagnets.19 We then captured different concentrations of magnetic beads as surrogates for cells (8.4 μm polystyrene, Spherotech, Inc.) and found that higher bead concentrations did not affect the capture accuracy (>95%; see supplementary material16).Open in a separate windowFIG. 3.Programmed pairing of magnetic beads and CD3+ lymphocytes. (a) Schematic of the magnetographic cell pair isolations. (b) Polarized micromagnets isolate cells of one type to one side in a vertical magnetic field and then cells of a second type to the other side when the field is reversed. (c) Fluorescent image of magnetically trapped green stained (top) and red stained (bottom) cell pairs. (d) SEM image of magnetically labeled cells in the microwells. (e) Capture accuracy of magnetic bead pairs. (Each color (and shape) represents the field strength of the reversed field.) (f) Change in the capture accuracy (loss) of initially captured beads after reversing the magnetic field. The capture accuracy of (g) magnetically labeled cell pairs and (h) the second magnetically labeled cell (for (e)–(h): n = 5; time starts from the deposition of the second set of cells or beads).The opposite side of each micromagnet was then populated with the second (yellow fluorescent) bead by reversing the direction of the applied magnetic field. We tested several field strengths (i.e., 10, 25, 40, or 55 G) to optimize the conditions for isolating the desired bead in the opposite well without ejecting the first bead. If the field strength was too large, the previously deposited beads could be ejected from their wells due to the repulsive magnetic force overcoming gravity.12 As shown in Figure 3(e), increasing the field strength from 10 to 25 G significantly increased the capture accuracy at 60 min from the deposition of the second bead (p < 0.01), but increases from 25 to 55 G did not affect the capture accuracy (p > 0.10). As shown in Figure 3(f), higher field strengths (i.e., 40 and 55 G) resulted in lower capture accuracies compared to lower field strengths (i.e., 10 and 25 G) (p < 0.01), which was primarily due to ejection of the initially captured beads when the micromagnets reversed their polarity.We then arranged pairs of membrane dyed (calcein AM, Invitrogen; PKH26, Sigma) magnetically labeled CD3+ lymphocytes. First, red stained cells (150 μl of 2 × 104 cells/ml) were deposited on the microchip in the presence of 250 G vertical magnetic field. After 20 min, the field was reversed (i.e., to 40, 55, and 70 G) and green stained cells (150 μl of 2 × 104 cells/ml) were deposited on the microchip with images taken in 10 min intervals. Fluorescence images were overlaid (Fig. 3(c)) and the capture accuracy of cell pairs was determined (ImageJ).As seen in Figure 3(g), the capture accuracy of pairs of CD3+ lymphocytes was lower than that of magnetic beads (Fig. 3(e)). However, as shown in Figure 3(h), the second set of cells (green fluorescent) exhibited an average capture accuracy of 91.8% ± 1.9%. This indicates that the lower capture accuracy of cell pairs was either due to the ejection of initially captured (red fluorescent) cells or the migration of initially captured cells through the connecting channel, resulting from their relatively high deformability compared to magnetic beads.In summary, we developed a simple device capable of organizing magnetic particles, cells, and pairs of cells into well-defined compartments. A major advantage of this system is the use of specific magnetic labels to both isolate cells and program their deposition. While the design of this device does not enable dynamic control of the spacing between captured cell pairs as does some dielectrophoresis-based devices,20 it can easily capture cells with high fidelity using only permanent magnets and has clinical relevance in the assessment of immune parameters. These demonstrations potentiate a relatively simple and robust device where highly organized spatial arrangement of cells facilitates rapid and accurate analyses towards a functional and low-cost point-of-care device.  相似文献   

10.
This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.Microfluidic technologies have found use in a wide range of applications, from chemical synthesis to biological analysis to materials and energy technologies.1,2 In recent years, there has been increasing interest in two-phase flow and droplet microfluidics, owing to their potential for providing a high-throughput platform for carrying out chemical and biological analysis and manipulations.3–8 Although droplets may be generated in many different ways, such as with electric fields or extrusion through a small nozzle,9–12 the most common microfluidic methods are based on the use of either T-junctions or flow-focusing geometries with which uniform droplets can be formed at high frequency in a steady-state fashion.13,14 Various operations, such as cell encapsulation, droplet fusion, splitting, mixing, and sorting, have also been developed, and these systems have been demonstrated for a wide range of applications, including cell analysis, protein crystallization, and material synthesis.1–17In addition to forming discrete droplets, where a disperse phase is completely surrounded by a continuous phase, it is also possible in certain situations to have different phases flow side-by-side. In fact, multi-stream laminar flow, either of the same phase or different phases, has been exploited for both biochemical analysis and microfabrication.1,2,18–20 Beads-on-a-string (BOAS) is another potential flow pattern, which has been attracting attentions in microfluidics field. BOAS flow, owing to its special flow structures, may be particularly useful in some applications, such as optical-sensor fabrication.21 In BOAS flow, queues of droplets are connected by a series of liquid threads, which makes them look like a fluid necklace with regular periods.21–25 The BOAS pattern is easily found in nature, such as silk beads and cellular protoplasm, and is often encountered in industrial processes as well, such as in electrospinning and anti-misting.21,22 In general, it is thought that BOAS structure occurs mostly in viscoelastic fluids22 and is an unstable structure, which evolves continually and breaks eventually.21–29Flow patterns determine the inter-relations of fluids in a microdevice and are an important parameter to control. Common methods for adjusting microfluidic flow patterns include varying the fluid flow rates, fluid properties, and channel geometries. Additionally, the application of an electric field can be a useful supplement for adjusting microfluidic flow patterns, although most work in this area has been focused on droplets and in some cases also on multi-stream laminar flows.30–33 Here, in addition to forming droplets and two-phase laminar flow with electro-hydrodynamic actuation, we also observed a new stable flow pattern in a non-viscoelastic fluid, BOAS flow. Such flow patterns may find use in controlling the interactions between droplets, such as limited mixing by diffusion between neighboring droplets.To generate droplets, we used the flow-focusing geometry (Figure 1(a)), in which aqueous phase (water) was flown down the middle channel and droplets were pinched off by the oil phase (1-octanol) from the two side channels at the junction; Figure 1(b) shows the droplets formed after the junction. To apply electric field along the main channel where the droplets were formed, we patterned a pair of electrodes upstream and downstream of the junction (Figure 1(a); for experimental details, please see Ref. 34 for supplementary material). The average electric field strength may be calculated from the voltages applied and the distance (1.7 mm) between the two electrodes. When a high voltage was applied along the channel between the two electrodes, the aqueous-oil interface at the flow-focusing junction became charged and behaved like a capacitor. As a result, more negative charges were drawn back upstream towards the positive electrode, and left behind more positive charges at the aqueous-oil interface, which then became encapsulated into the aqueous droplets dispersed in the oil phase.Open in a separate windowFIG. 1.(a) Schematic of the setup. (b) Micrograph showing droplet generation in a flow-focusing junction. The scale bar represents 40 μm.The positively charged aqueous-oil interface was stretched under an applied electric field, and by adjusting the voltage and/or the two-phase flow-rate ratio, we found interestingly that various flow patterns emerged. We tested different combinations of applied voltages and flow-rate ratios and found that most of them resulted in similar flow patterns and transitions between flow patterns.Figure Figure22 illustrates the effects of varying the applied voltages on droplets at a fixed liquid flow rate. With increasing electric-field strength and force, we found it was easier for the aqueous phase to overcome interfacial tension and form droplets. For example, as the voltage increased from 0.0 kV to 0.8 kV (average field strength increased from 0 to 0.47 V/μm), droplet-generation frequencies became slightly higher, and the formed droplets were smaller in volume. Additionally, droplets gradually became more spherical in shape at higher voltages.Open in a separate windowFIG. 2.Images showing the effects of applied voltage on droplet shape and flow pattern. Oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.As the voltage increased further (e.g., up to 1.0 kV in Figure Figure3),3), the distance between neighboring droplets became smaller, and the aqueous-oil interface at the junction was stretched further toward the downstream channel. At a threshold voltage (1 kV here with corresponding average field strength of 0.59 V/μm), the tip of the aqueous-oil interface would catch up with the droplet that just formed, and the tip of the interface of this newly captured droplet would in turn catch up with the interface of the droplet that formed before it. Consequently, a series of threads would connect all the droplets flowing between the two electrodes, thus resulting in a BOAS flow pattern.Open in a separate windowFIG. 3.Series of images showing the reversibility and synchronicity of a transitional flow pattern between droplets and BOAS (bead-on-a-string). Voltage applied, 1.00 kV (corresponding field strength of 0.59 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.At voltages near the threshold value, the flow pattern was not stable, but oscillated between droplets flow and BOAS flow. Figure Figure33 is a series of images captured by a high-speed camera that show the flow in this transition region. In Figures 3(a) and 3(b), the string of BOAS became thinner over time, and then the BOAS broke into droplets (Figures 3(c) and 3(d)). The newly formed droplets, however, were not stable either. Thin liquid threads would appear and then connect neighboring droplets, and a new switching period between discrete droplets and BOAS would repeat (Figures 3(e)–3(h)). In addition to this oscillation and reversibility, the flow pattern had a synchronous behavior: all the droplets appeared connected simultaneously by liquid threads or were separated at the same time.When the voltage reached 1.3 kV, which corresponded to an average field strength of 0.76 V/μm, a stable BOAS flow was obtained (Figure 4(a)). BOAS structures are thought to be present mostly in viscoelastic fluids,22 because viscoelasticity is helpful in enhancing the growth of beads and in delaying breakup of the string; thus, the viscoelastic filament has much longer life time than its Newtonian counterpart. Here, with the help of electric field, regular BOAS structures are realized in a non-viscoelastic fluid (water) in microchannels.Open in a separate windowFIG. 4.(a) Micrograph showing BOAS flow in a channel. (b) Profile of the top-half of the BOAS flow recorded continuously at a cross-section (shown in Figure 4(a)) of a channel. Voltage applied, 1.30 kV (corresponding field strength of 0.76 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.Microenvironment and electric fields alter the common evolution of BOAS structure observed in macroscopic or unbound environments. The BOAS structure formed in our experiments is not a stationary pattern, but a steady-state flowing one. Electric-field force prevents liquid strings from breaking between beads, and thus plays a similar role as elastic force in viscoelastic fluids. Figure 4(b) shows the dynamic BOAS profile, obtained at a fixed plane (shown in Figure 4(a)) perpendicularly across the channel as the BOAS structure passed through it. Droplets and liquid-thread diameters were nearly constant during the sampling time. The longer term experiments (over 3 min) showed there were slight variations of the two diameters in time, but the essential BOAS structure still remained qualitatively the same as a whole.When the voltage was further increased, the string diameter became larger and the droplet diameter became smaller. Because of the low flow-rate ratio (0.4) between the aqueous phase and oil phase used in the experiment depicted in Figure Figure4,4, the flow did not further develop into a multi-stream laminar flow, as would be expected at a higher voltage, and instead became unstable and irregular. When the flow-rate ratio was increased to 1.0 and the voltage was adjusted to 3.0 kV (corresponding field strength of 1.76 V/μm), we observed a stable multi-stream laminar flow (Figure (Figure5).5). The aqueous stream flowed in the channel center surrounded by the oil phase on the sides. This experiment showed that higher electric-field strengths alone would not give rise to another stable flow pattern (i.e., multi-stream laminar flow), but a suitable flow-rate ratio of aqueous phase to oil phase is required for the formation of stable two-phase laminar flow.Open in a separate windowFIG. 5.Micrograph showing multi-stream two-phase laminar flow in the channel. Voltage applied, 3.00 kV (corresponding field strength of 1.76 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.5 μl/min. The scale bar represents 40 μm.The flow patterns we observed may be described by a phase diagram (Figure (Figure6),6), which depends on two dimensionless numbers: capillary number, Ca = μaUa/σ, and electric Bond number, Boe = E2(εD/σ). Ca and Boe describe the ratio of viscous force to interfacial tension force and the ratio of electric-field force to interfacial tension force, respectively. Here, μa (1 mPa s), σ (8.5 mN/m), ε (7.1 × 10−10 F/m), E, Ua, and D are, respectively, the aqueous-phase viscosity, aqueous-oil interfacial tension, aqueous-phase permittivity, electric field strength, aqueous-phase velocity, and the hydraulic diameter of the channel at the junction. Figure Figure66 shows clearly that at higher Ca, flow pattern changes gradually from droplet to BOAS and to multi-stream laminar flow with increasing Boe, which indicates the increasing importance of the electric-field force compared with the interfacial tension force. At lower Ca, flow pattern and transition show similar trend with increasing Boe as in the higher Ca case, except that multi-stream laminar flow is not observed. The relatively higher viscous force at higher Ca may be necessary for transitioning to the multi-stream laminar flow regime. In addition, Figure Figure66 shows that the BOAS window at the lower Ca is smaller than that at the higher Ca.Open in a separate windowFIG. 6.Phase diagram showing different flow patterns in the Ca and Boe space. Hollow symbols: oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.5 μl/min. Solid symbols: oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min.In summary, we showed the ability to use electric fields to generate and control different flow patterns in two-phase flow. With the aid of an applied field, we were able to generate BOAS flow patterns in a non-viscoelastic fluid, a pattern that typically requires a viscoelastic fluid. The BOAS structure was stable and remained as long as the applied electric field was on. We also report transitional flow patterns, those between droplets and BOAS exhibited both good reversibility as well as synchronicity. And with a suitable flow-rate ratio between the two phases, BOAS flow could be transitioned into a stable two-phase laminar flow by applying a sufficiently high field strength. Finally, a phase diagram was presented to describe quantitatively the flow-pattern regimes using capillary number and electric Bond number. The phenomena we report here on the properties of two-phase flow under an applied electric field may find use in developing a different approach to exert control over droplet based or multi-phase laminar-flow based operations and assays, and also aid in understanding the physics of multi-phase flow.  相似文献   

11.
Membrane hydrophobicity and slalidase activity of normal Poly morphonuclear Leucocyte were significantly enhanced when incubated with DSF. As a consequence, internalisation ofE. coli andS. aureus (opsonised or unopsonised) were greatly dimnished, internalisation ofE. coli being higher in either category. Although, increase in hydrophobicity of the membrane correlated well with the time of decrease of particle internalisation (both at 30 min.), enhancement of sialidase activity did not coincide with the said alterations.  相似文献   

12.
《普罗米修斯》2012,30(3):349-351
John Vincent coordinates The Network, formed in May 1999 as a legacy of a project funded by the Library and Information Commission, Public Library Policy and Social Exclusion (see Muddiman, 2000 Muddiman, D. (ed.) (2000) Open to All? The Public Library and Social Exclusion, Resource – Council for Museums, Archives and Libraries, London, available from http://www.mla.gov.uk/resources/assets//L/lic084_pdf_5679.pdf  [Google Scholar]). The Network’s mission is ‘to assist the cultural sector, including libraries, museums, archives and galleries, heritage and other organisations, to work towards social justice’.  相似文献   

13.
This research reports an improved conjugation process for immobilization of antibodies on carboxyl ended self-assembled monolayers (SAMs). The kinetics of antibody/SAM binding in microfluidic heterogeneous immunoassays has been studied through numerical simulation and experiments. Through numerical simulations, the mass transport of reacting species, namely, antibodies and crosslinking reagent, is related to the available surface concentration of carboxyl ended SAMs in a microchannel. In the bulk flow, the mass transport equation (diffusion and convection) is coupled to the surface reaction between the antibodies and SAM. The model developed is employed to study the effect of the flow rate, conjugating reagents concentration, and height of the microchannel. Dimensionless groups, such as the Damköhler number, are used to compare the reaction and fluidic phenomena present and justify the kinetic trends observed. Based on the model predictions, the conventional conjugation protocol is modified to increase the yield of conjugation reaction. A quartz crystal microbalance device is implemented to examine the resulting surface density of antibodies. As a result, an increase in surface density from 321 ng/cm2, in the conventional protocol, to 617 ng/cm2 in the modified protocol is observed, which is quite promising for (bio-) sensing applications.Microfluidics have been implemented in various bio-medical diagnostic applications, such as immunosensors and molecular diagnostic devices.1 In the last decade, a vast number of biochemical species has been detected by microfluidic-based immunosensors. Immunosensors are sensitive transducers which translate the antibody-antigen reaction to physical signals. The detection in an immunosensor is performed through immobilization of an antibody that is specific to the analyte of interest.2 The antibody is often bound to the transducing surface of the sensor covered by self-assembled monolayers (SAMs). SAMs are organic materials that form a thin, packed and robust interface on the surface of noble metals like that of gold, suitable for biosensing applications.3 Thiolic SAMs have a “head” group that shows a high affinity to being chemisorbed onto a substrate, typically gold. The SAMs'' carboxylic functional group of the “tail” end can be linked to an amine terminal of an antibody to form a SAM/antibody conjugation.3,4 The conjugation process is usually accomplished in the presence of carbodiimides, such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). A yield increasing additive, N-Hydroxysuccinimide (NHS), is often used to enhance the surface loading density of the antibody.4,5A typical reaction for coupling the carboxylic acid groups of SAMs with the amine residue of antibodies in the presence of EDC/NHS is depicted in Figure Figure11.4 NHS promotes the generation of an active NHS ester (k2 reaction path). The NHS ester is capable of efficient acylation of amines, including antibodies (k3 reaction path). As a result, the amide bond formation reaction, which typically does not progress efficiently, can be enhanced using NHS as a catalyst.4Open in a separate windowFIG. 1.NHS catalyzed conjugation of antibodies to carboxylic-acid ended SAMs through EDC mediation (Adapted from G. T. Hermanson, Bioconjugate Techniques, 2nd. Edition. Copyright 2008 by Elsevier4). EDC reacts with the carboxylic acid and forms o-acylisourea, a highly reactive chemical that reacts with NHS and forms an NHS ester, which quickly reacts with an amine (i.e., antibody) to form an amide.A number of groups have studied EDC/NHS mediated conjugation reactions such as the ones depicted in Figure Figure1.1. The general stoichiometry of the reaction involves a carboxylic acid (SAM), an amine (antibody), and EDC to produce the final amide (antibody conjugated SAM) and urea. However, the recommended concentration ratio of the crosslinking reagents inside the buffer, i.e., the ratio of EDC and NHS with respect to adsorbates and each other, varies from one study to another.6 The kinetics of the reactions outlined in Figure Figure11 have also been investigated,4,6–8 but only in the absence of NHS for EDC or carboxylic acids in aqueous solutions.8 A relatively recent experimental study verified the catalytic role of the yield-increasing reagent N-hydroxybenzotriazole (HOBt), which acts similarly to NHS.7 In this study, the amide formation rate (k3 reaction path, Figure Figure1)1) was found to be dependent on the concentration of the carboxylic acid and EDC in the buffer solution, and independent of the amine and catalyst reagent concentration. The same group also showed that the amide bond formation kinetics is controlled by the reaction between the carboxylic acid and the EDC to give the O-acylisourea, which they marked as the rate-determining step (k1 reaction path, Figure Figure11).The k1 reaction path, or the conjugation reaction, is usually a lengthy process and takes between 1 and 3 h.4,9 Compared to k1, the k2 and ?k3 reactions are considerably faster. Microfluidics has the potential to enhance the kinetics of these reactions using the flow-through mode.10,11 This improvement occurs because while conventional methods rely only on diffusion as the primary reagent transport mode, microfluidics adds convection to better replenish the reagents to the reaction surfaces. However, there are many fundamental fluidic and geometrical parameters that might affect the process time and reagents consumption in a microfluidics environment, such as concentration of antibodies and reagents, flow rate, channel height, and final surface density of antibodies. A model that studies the kinetics of conjugation reaction against all these parameters would therefore be helpful for the optimization of this enhanced kinetics.There are a number of reports on numerical examination of the kinetics of binding reactions in microfluidic immunoassays.12–15 All these models developed so far couple the transport of reagents, by diffusion and convection, to the binding on the reaction surface. Myszka''s model assumes a spatially homogeneous constant concentration of reagents throughout the reaction chamber, thus fails to describe highly transport-limited conditions due to the presence of spatial heterogeneity and depletion of the bulk fluid from reagents.16,17 In transport-limited conditions, the strength of reaction is superior to the rate of transport of reagents to the reaction surface.18,19 More recently, the convection effects were included in a number of studies, describing the whole kinetic spectrum from reaction-limited conditions to transport-limited reactions.20–22 Immunoreaction kinetics has also been examined with a variety of fluid driving forces, from capillary-driven flows,20 to electrokinetic flows in micro-reaction patches,21 pressure-driven flows in a variety of geometric designs.22 Despite these comprehensive numerical investigations, the fundamental interrelations between the constitutive kinetic parameters, such as concentration, flow velocity, microchannel height, and antibody loading density, have not been studied in detail. In addition, the conjugation kinetics has not yet been exclusively examined.In this paper, a previous model for immunoreaction is modified to study the antibody/SAM conjugation reaction in a microfluidic system. Model findings are used to examine the process times recommended in the literature and possible modification scenarios are proposed. The new model connects the convective and diffusive transport of reagents in the bulk fluid to their surface reaction. The conjugation reaction is studied against fluidic and geometrical parameters such as flow rate, concentration, microchannel height and surface density of antibodies. Damköhler number is used to compare the reaction and fluidic phenomena present and justify the kinetic trends observed. Model predictions are discussed and the main finding on possible overexposure of carboxylates to crosslinking reagents, in conventional protocols, is verified by comparing the resultant antibody loading densities obtained using a quartz crystal microbalance (QCM) set up. The results demonstrate an improved receptor (antibody) loading density which is quite promising for a number of (bio-) sensing applications.23,24 Major application areas include antibody-based sensors for on-site, rapid, and sensitive analysis of pathogens such as Bacillus anthracis,23 Escherichia coli, and Listeria monocytogenes, and toxins such as fungal pathogens, viruses, mycotoxins, marine toxins, and parasites.24  相似文献   

14.
The emerging discipline of Machine Ethics is concerned with creating autonomous artificial moral agents that perform ethically significant actions out in the world. Recently, Wallach and Allen (Moral machines: teaching robots right from wrong, Oxford University Press, Oxford, 2009) and others have argued that a virtue-based moral framework is a promising tool for meeting this end. However, even if we could program autonomous machines to follow a virtue-based moral framework, there are certain pressing ethical issues that need to be taken into account, prior to the implementation and development stages. Here I examine whether the creation of virtuous autonomous machines is morally permitted by the central tenets of virtue ethics. It is argued that the creation of such machines violates certain tenets of virtue ethics, and hence that the creation and use of those machines is impermissible. One upshot of this is that, although virtue ethics may have a role to play in certain near-term Machine Ethics projects (e.g. designing systems that are sensitive to ethical considerations), machine ethicists need to look elsewhere for a moral framework to implement into their autonomous artificial moral agents, Wallach and Allen’s claims notwithstanding.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) shows promise for identifying single bacteria, but the short range nature of the effect makes it most sensitive to the cell membrane, which provides limited information for species-level identification. Here, we show that a substrate based on black silicon can be used to impale bacteria on nanoscale SERS-active spikes, thereby producing spectra that convey information about the internal composition of the bacterial capsule. This approach holds great potential for the development of microfluidic devices for the removal and identification of single bacteria in important clinical diagnostics and environmental monitoring applications.Plasma etching of silicon can be used to produce inexpensive, large surface area, nano-textured surfaces known as black silicon. Recently, it has been shown that black silicon nano-needles can impale bacteria1 and that it can be used as a sensor in microfluidic devices.2 When coated by a plasmonic metal, such as gold, the nano-textured surface of black silicon is ideal for use as a surface-enhanced Raman scattering (SERS) sensing platform.3 This work aims to investigate whether gold-coated black silicon nano-needles can be used to both impale bacteria and identify them by SERS. This combination of properties would promote the development of microfluidic devices for the removal and monitoring of bacteria in a wide range of medical, environmental, and industrial applications.4Black silicon was fabricated by a reactive ion etching technique,5 resulting in pyramidal-shaped spikes of height 185 ± 30 nm, full width at half height of 54 ± 10 nm, and 10 ± 2.4 nm radius of curvature at the tip. Samples were then magnetron sputter coated with 200 nm of gold, as this coating thickness was found to provide a suitable compromise between SERS enhancement and impalement efficiency. E. coli (ATCC 25922) from −80 °C stock was isolated on a nutrient agar plate (Difco nutrient broth, Becton Dickinson) for approximately 12 h. A single E. coli colony was then inoculated from the plate into 20 ml of nutrient broth media and incubated overnight at 37 °C with orbital shaking at 200 rpm. The total biomass of overnight culture was adjusted to an optical density of 0.3 at λ = 600 nm by adding fresh sterile nutrient broth (Cary 50 spectrophotometer, Agilent). The E. coli planktonic cells were washed three times by centrifugation at 12 000 rpm (Centrifuge 5804 R, Eppendorf) for 2 min. The washed cells were then re-suspended in a low strength minimum medium (Dulbecco A, phosphate buffered saline). A volume of 100 μl of solution was pipetted onto substrates and left to incubate for 1 h on the bench. Separate sets of samples were created for scanning electron microscope (SEM) imaging, live/dead staining, and SERS. Three sets were needed as each of these measurements altered the samples and left them unsuitable for further analysis.The first set of samples was washed three times with milliQ water after incubation, allowed to dry and then immediately sputter coated with gold using the Emitech K975x (operating current 35 mA, sputter time 32 s, stage rotation 138 rpm, and vacuum of 1 × 10−2 mbar). SEM imaging was performed with a Zeiss Supra 40VP in high vacuum mode with a working distance of 5 mm and an accelerating voltage of 3 kV. Figure Figure11 shows an example of the different levels of impalement that occurred on the black silicon surface. All cells showed signs of damage, but in some cases, the damage was limited to the perimeter of the cell and the main body appeared whole. In other cases, the entire cell had collapsed onto the spikes.Open in a separate windowFIG. 1.A typical SEM image showing E. coli cells with different levels of impalement on gold-coated black silicon.The second set of samples was used for live/dead staining (Invitrogen BacLight Bacterial Viability Kit L7012) with 3.34 mM SYTO 9 (green fluorescence) and 20 mM propidium iodide (red fluorescence). Equal volumes of both dyes were mixed thoroughly in a tube and added to the sample in a ratio of 3 μl of mixed dye to 1 ml of bacterial suspension. After mixing, a volume of 100 μl of the solution was pipetted onto the substrates, which were then incubated at room temperature in the dark for 15 min, before the staining solution was removed by pipetting. The substrates were then washed three times with milliQ water and mounted on a microscope slide for fluorescence imaging. The substrates were not allowed to dry and were stored in phosphate buffered saline at 4 °C when not in use. An epifluorescence microscope (Olympus IX71) with a mercury lamp source and a 60× water immersion objective was used to collect live/dead images from the substrates. Two filter blocks were used to collect the images: U-MNIBA2 blue excitation narrow band delivered green emission (live) and U-MWIG2 green excitation wide band provided red emission (dead).The live/dead image in Figure Figure22 shows a mix of both live and dead cells on the black silicon sample. The prevalence of live cells could be due to the incomplete impalement seen under SEM for some cells. It can also be explained by the sample still being wet during live/dead staining. The cells are dried prior to imaging in the SEM and this could weaken the cell wall and allow capillary forces to draw the cells onto the spikes for impalement. This hypothesis is supported by the large number of cells on the stained sample and the presence of cell groupings and cells imaged during mid-division. If the cells were immediately impaled, then such activity would not have been visible and a greater proportion of red cells would be expected.Open in a separate windowFIG. 2.Epifluorescence image showing live (green) and dead (red) E. coli cells after incubation on gold-coated black silicon.The third set of samples was washed three times with milliQ water after incubation and allowed to dry prior to spectral analysis. SERS spectra were collected with a Renishaw inVia Raman spectrometer operating at 785 nm with a 1200 l/mm grating. Power at the sample was 150 mW focused with a 100 × /0.85 NA objective to obtain a diffraction limited laser spot. The resulting spot size (≤2 μm in diameter) is well matched to the size of the bacterial cells. Spectra were collected with three accumulations of 10 s. Data were background subtracted6 and normalised to unity for ease of plotting. A great deal of variability was observed in the resulting spectra, as shown in Figure Figure33.Open in a separate windowFIG. 3.SERS spectra of E. coli after incubation on a gold-coated black silicon substrate. The spectrum numbers represent single cells at different locations and different levels of impalement.It should be noted that E. coli SERS is known to produce a high level of variability,7–12 depending on the experimental setup.13 However, the variability seen in the SERS spectra of Fig. Fig.33 is unusual for measurements performed under consistent experimental conditions. This increased level of variability may be related to the different levels of impalement seen in Fig. Fig.1,1, which results in the probing of different internal components. SERS is a surface sensitive technique, with the signal primarily arising within 2 nm of the metal surface.14 Note that unlike apertureless nanoprobes15 or conical plasmonic nanotips,16 the SERS signal in black silicon arises primarily from “hot spots” between the spikes, where the plasmon resonance field is particularly strong.17 Therefore, depending on the depth and location of impalement, different biomolecules are expected to be excited by this novel substrate.Some peaks occur in the same position for multiple spectra (e.g., peak positions 420, 893, 1001, 1285, and 1307 cm−1), but there are also a lot of unique peaks. The vertical lines in Fig. Fig.33 indicate peaks which have appeared in the literature for SERS of E. coli.7–12 Spectrum 3 has a high proportion of peaks matching published values. This is also the case for spectrum 5, which shares a few peak positions with spectrum 3. Preliminary peak allocations have identified carbohydrates11 (420 cm−1), tyrosine11 (650 cm−1), adenine10,11 (706 and 735 cm−1), hypoxanthine7 (722 and1373 cm−1), phenylalanine9 (1001 cm−1), amide III (Ref. 10) (1285 cm−1), CH2 deformation12 (1556 cm−1), and C=C10 (1587 cm−1).Given the varying levels of impalement observed in the SEM, it appears that the spike shape and Au coating should be further optimized to ensure that the entire cell is consistently pierced and the internal biomolecules are more comprehensively probed. In this way, it may be possible to obtain a more reproducible SERS spectrum of the internal biomolecular constituents of single bacterial cells, thereby providing rapid identification for medical and environmental diagnostic applications. Given that SERS is insensitive to water,4 future work should aim to achieve impalement in an aqueous environment, so that the full capability of microfluidics can be used to separate and concentrate suspended bacteria before presenting them to the substrate for rapid analysis.4 This suggests a broad range of potential applications in the detection, monitoring, and control of bacterial contamination.  相似文献   

16.
A microfluidic device was successfully fabricated for the rapid serodiagnosis of amebiasis. A micro bead-based immunoassay was fabricated within integrated microfluidic chip to detect the antibody to Entamoeba histolytica in serum samples. In this assay, a recombinant fragment of C terminus of intermediate subunit of galactose and N-acetyl-D-galactosamine-inhibitable lectin of Entamoeba histolytica (C-Igl, aa 603-1088) has been utilized instead of the crude antigen. This device was validated with serum samples from patients with amebiasis and showed great sensitivity. The serodiagnosis can be completed within 20 min with 2 μl sample consumption. The device can be applied for the rapid and cheap diagnosis of other infectious disease, especially for the developing countries with very limited medical facilities.Entamoeba histolytica is the causative agent of amebiasis and is globally considered a leading parasitic cause of human mortality.1 It has been estimated that 50 × 106 people develop invasive disease such as amebic dysentery and amebic liver abscess, resulting in 100 000 deaths per annum.2, 3 High sensitive diagnosis method for early stage amebiasis is quite critical to prevent and cure this disease. To date, various serological tests have been used for the immune diagnosis of amebiasis, such as the indirect fluorescent antibody test (IFA) and enzyme-linked immunosorbent assay (ELISA).We have recently identified a 150-kDa surface antigen of E. histolytica as an intermediate subunit (Igl) of galactose and N-acetyl-D-galactosamine-inhibitable lectin.4, 5 In particular, it has been shown that the C-terminus of Igl (C-Igl, aa 603-1088) was an especially useful antigen for the serodiagnosis of amebiasis. ELISA using C-Igl is more specific than the traditional ELISA using crude antigen.6 However, the ELISA process usually takes several hours, which is still labor-intensive and requires experienced operators to perform. More economic and convenient filed diagnosis methods are still in need, especially for the developing countries with limited medical facilities.Among all the bioanalytical techniques, microfluidics has been attracting more and more attention because of its low reagent/power consumption, the rapid analysis speed as well as easy automation.7, 8, 9, 10, 11 Especially with the development of the fabrication technique, microfluidics chip can include valves, mixers, pumps, heating devices, and even micro sensors, so many traditional bioanalytical methods can be performed in the microfluidics. Qualitative and quantitative immune analysis on the microfluidic chip was successfully proved by plenty of research with improved sensitivity, shorten reaction time, and less sample consumption.8, 10, 11, 12, 13, 14, 15, 16, 17 Moreover, with the intervention of other physical, chemical, biology, and electronic technology, microfluidic technique has been successfully utilized in protein crystallization, protein and gene analysis, cell capture and culturing and analysis as well as in the rapid and quantitative detection of microbes.13, 14, 15, 16, 17, 18, 19, 20Herein, we report a new integrated microfluidic device, which is capable of rapid serodiagnosis of amebiasis with little sample consumption. The microfluidic device was fabricated from polydimethysiloxane (PDMS) following standard soft lithography.21, 22 The device was composed of two layers (shown in Figure Figure1)1) including upper fluidic layer (in green and blue) and bottom control layer (in red).Open in a separate windowFigure 1Structure illustration of microfluidic chip.To create the fluidic layer and the control layer, two different molds with different patterns have fabricated by photolithographic processes. The mold to create the fluidic channels was made by positive photoresist (AZ-50 XT), while the control pneumatic mold was made by negative photoresist (SU8 2025). For the chip fabrication, the fluidic layer is made from PDMS (RTV 615 A: B in ratio 5:1), and the pattern was transferred from the respective mold. The control layer is made from PDMS (RTV 615 A:B in ratio 20:1). The two layers were assembled and bonded together accurately, and there is elastic PDMS membrane about 30 μm thick between the fluidic layer channels and control layer.21, 22 The elastic membrane at the intersection can deform to block the fluid inside the fluidic channels, functioning as valves under the pressures introduced though control channels. There are two types of channels in fluidic layer, the rectangular profiled (in green, 200 μm wide, 35 μm thick) channel and round profiled channels (in blue, 200 μm wide, 25 μm center height). Because of the position of the valves on the fluidic channels, two types of valves (Figure (Figure2a)2a) were built, working as a standard valve and a sieve valve. The standard valves (on blue fluidic channels) can totally block the fluid because of the round profile of fluidic channel; the sieve valve can only half close because of the rectangular profile. The sieve valve can be used to trap the microspheres (beads) filled inside the green fluidic channels, while letting the fluid pass through. By this sieve valve, a micro column (in green) is constructed, where the entire ELISA reaction happens. The micrograph of the fabricated micro device is shown in Figure Figure2b.2b. The channels were filled with food dyes in different colors to show the relative positions of the channels. The pressures though different control channels are individually controlled by solenoid valves, connected to a computer through relay board. By programming the status (on/off) of various valves at different time periods, all the microfluidic chip operation can be digitally controlled by the computer in manual, semi-automatic, or automatic manner.Open in a separate windowFigure 2(a) Structure illustration of micro column, standard valve and sieve valve; (b) photograph of the microfluidic chip.To validate this device, 12 patient serum samples were collected. Sera from 9 patients (Nos. 1–9) with an amebic liver abscess or amebic colitis were used as symptomatic cases. The diagnosis of these patients was based on their clinical symptoms, ultrasound examination (liver abscess) and endoscopic or microscopic examination (colitis). We also identified the clinical samples using PCR amplification of rRNA genes.24 As negative control, sera obtained from 3 healthy individuals with no known history of amebiasis were mixed into pool sera. The serum was positive for E. histolytica with a titer of 1:64 (borderline positive), as determined by an indirect fluorescent-antibody (IFA) test.23, 24 In our previously study, the sensitivity and specificity of the recombinant C-Igl in the ELISA were 97% and 99%.6, 25 In the current study, the serodiagnosis of amebiasis was also examined by ELISA using C-Igl.26 The cut-off for a positive result was defined as an ELISA value > 3 SD above the mean for healthy negative controls27 (shown in Figure Figure3).3). The seropositivity to C-Igl was 100% in patients with amebiasis.Open in a separate windowFigure 3ELISA reactivity of sera from patients against C-Igl. ELISA plate was coated with 100 ng per well of C-Igl. Serum samples from patients and healthy controls were used at 1:400 dilutions. The dashed line indicates the cut-off value. Data are representative of results from three independent experiments.In the diagnosis process with microfluidic chip, the 4 micro immuno-columns filled with C-Igl-coated microspheres were the key components of the device. The C-Igl was prepared in E. coli as inclusion bodies. After expression, the recombinant protein was purified and analyzed by SDS-PAGE. The apparent molecular mass was 85 kDa.26The immune-reaction mechanism is illustrated in Figure Figure4.4. The anti-His monocolonal antibody was immobilized onto the microspheres (beads, 9 μm diameter) coated with protein A. The C-Igl was then immobilized onto the beads through the binding between the His tag and C-Igl. For the diagnosis, the microspheres immobilized with C-Igl and blocked by 5% BSA were preloaded into the columns for the rapid analysis of the patient serum samples. Generally, serum samples which were diluted 100 times were first loaded into the reaction column and incubated at room temperature for 5 min. After being washed by PBS buffer, FITC-conjugated goat anti-human polyclonal antibody was added into the column for 4 min incubation. The fluorescence image can be collected by the fluorescence microscope after the micro column was washed with PBS buffer. From loading diluted serum samples into column to collecting fluorescence images, the total time to complete the immunoassay is less than 10 min. The final fluorescence results were analyzed by Image Pro Plus 6.0.Open in a separate windowFigure 4Schematic representation of the ELISA in the chip.Different reaction conditions have been investigated to find the optimized ones. For each patient, 2 μl sample is enough for the analysis. The designed microfluidic chip with 4 micro columns is capable for 4 parallel analyses at the same time. More micro columns can be integrated into the device if more parallel tests are needed.Different incubating time for the diagnosis has also been investigated and no significant difference has been found for various time periods. It is enough to incubate the chip for only 5 min. The total diagnosis time for one sample is less than 10 min. The detection result appeared as the fluorescence intensity of the reaction column. As shown in Figure Figure5,5, the negative sample showed relatively low fluorescence intensity, because little FITC-conjugated goat anti-human polyclonal antibody could attach to the surface of microspheres; on the contrast, the positive sample showed much brighter fluorescence. The fluorescence intensity can be transferred to digital data (Table
SampleAverage scoresStandard deviation
133 790368
223 269271
339 598307
4778452
521 222197
638 878290
722 437227
836 295334
941 024396
Negative20032
Open in a separate windowOpen in a separate windowFigure 5ELISA on the chip. The signals were collected by CCD of microscope. A: negative sample; B and C: positive samples.For the heterogeneous immunoreactions, the immobilization of the immune molecules is essential for the reaction efficiency. Herein, we utilized micro columns filled with pre-modified microspheres (beads) instead of the direct surface modification for the ELISA analysis. Compared with the traditional method, diagnosis using the microfluidic device took less than 10 min with only 2 μl sample consumption and little reagent consumption. The high efficiency might be attributed to the high surface modification efficiency by using beads as well as the advantages from microfluidic device itself. The C-Igl modified microspheres can be easily prepared in 1 h and preloaded inside the micro device for convenient application. The device is made from standard soft lithography by PDMS and its throughput can be easily improved by adding more micro columns into the microfluidic device in an economic manner, which is perfect for the onsite rapid and cheap diagnosis of amebiasis. Similar methodologies can be developed for diagnosis of other infectious disease, especially for the developing countries with very limited medical facilities.  相似文献   

17.
Water transport to the core–mantle boundary     
Michael J Walter 《国家科学评论(英文版)》2021,8(4)
Water is transported to Earth''s interior in lithospheric slabs at subduction zones. Shallow dehydration fuels hydrous island arc magmatism but some water is transported deeper in cool slab mantle. Further dehydration at ∼700 km may limit deeper transport but hydrated phases in slab crust have considerable capacity for transporting water to the core-mantle boundary. Quantifying how much remains the challenge.

Water can have remarkable effects when exposed to rocks at high pressures and temperatures. It can form new minerals with unique properties and often profoundly affects the physical, transport and rheological properties of nominally anhydrous mantle minerals. It has the ability to drastically reduce the melting point of mantle rocks to produce inviscid and reactive melts, often with extreme chemical flavors, and these melts can alter surrounding mantle with potential long-term geochemical consequences. At the base of the mantle, water can react with core iron to produce a super-oxidized and hydrated phase, FeO2Hx, with the potential to profoundly alter the mantle and even the surface and atmosphere redox state, but only if enough water can reach such depths [1].Current estimates for bulk mantle water content based on the average H2O/Ce ratio of oceanic basalts from melt inclusions and the most un-degassed basalts, coupled with mass balance constraints for Ce, indicate a fraction under one ocean mass [2], a robust estimate as long as the basalts sampled at the surface tap all mantle reservoirs. The mantle likely contains some primordial water but given that the post-accretion Earth was very hot, water has low solubility and readily degasses from magma at low pressures, and its solubility in crystallizing liquidus minerals is also very low, the mantle just after accretion may have been relatively dry. Thus, it is plausible that most or even all of the water in the current mantle is ‘recycled’, added primarily by subduction of hydrated lithospheric plates. If transport of water to the core–mantle boundary is an important geological process with planet-scale implications, then surface water incorporated into subducting slabs and transported to the core–mantle boundary may be a requirement.Water is added to the basaltic oceanic crust and peridotitic mantle in lithospheric plates (hereafter, slab crust and slab mantle, respectively) at mid-ocean ridges, at transform faults, and in bending faults formed at the outer rise prior to subduction [3]. Estimates vary but about 1 × 1012 kg of water is currently subducted each year into the mantle [4], and at this rate roughly 2–3 ocean masses could have been added to the mantle since subduction began. However, much of this water is returned to the surface through hydrous magmatism at convergent margins, which itself is a response to slab dehydration in an initial, and large, release of water. Meta-basalt and meta-sediments comprising the slab crust lose their water very efficiently beneath the volcanic front because most slab crust geotherms cross mineral dehydration or melting reactions at depths of less than 150 km, and even if some water remains stored in minerals like lawsonite in cooler slabs, nearly complete dehydration is expected by ∼300 km [5].Peridotitic slab mantle may have much greater potential to deliver water deeper into the interior. As shown in Fig. 1a, an initial pulse of dehydration of slab mantle occurs at depths less than ∼200 km in warmer slabs, controlled primarily by breakdown of chlorite and antigorite when slab-therms cross a deep ‘trough’, sometimes referred to as a ‘choke point’, along the dehydration curve (Fig. 1a) [6]. But the slab mantle in cooler subduction zones can skirt beneath the dehydration reactions, and antigorite can transform directly to the hydrated alphabet silicate phases (Phases A, E, superhydrous B, D), delivering perhaps as much as 5 wt% water in locally hydrated regions (e.g. deep faults and fractures in the lithosphere) to transition zone depths [6]. Estimates based on mineral phase relations in the slab crust and the slab mantle coupled with subduction zone thermal models suggest that as much as 30% of subducted water may have been transported past the sub-volcanic dehydration front and into the deeper mantle [4], although this depends on the depth and extent of deep hydration of the slab mantle, which is poorly constrained. Coincidentally, this also amounts to about one ocean mass if water subduction rates have been roughly constant since subduction began, a figure tantalizingly close to the estimated mantle water content based on geochemical arguments [2]. But what is the likely fate of water in the slab mantle in the transition zone and beyond?Open in a separate windowFigure 1.(a) Schematic phase relations in meta-peridotite modified after [6,10,12]. Slab geotherms are after those in [4]. Cold slabs may transport as much as 5 wt% water past ‘choke point 1’ in locally hydrated regions of the slab mantle, whereas slab mantle is dehydrated in warmer slabs. Colder slab mantle that can transport water into the transition zone will undergo dehydration at ‘choke point 2’. How much water can be transported deeper into the mantle and potentially to the core depends on the dynamics of fluid/melt segregation in this region. (b) Schematic showing dehydration in the slab mantle at choke point 2. Migration of fluids within slab mantle will result in water dissolving into bridgmanite and other nominally anhydrous phases with a bulk storage capacity of ∼0.1 wt%, potentially accommodating much or all of the released water. Migration of fluids out of the slab into ambient mantle would also hydrate bridgmanite and other phases and result in net fluid loss from the slab. Conversely, migration of hydrous fluids into the crust could result in extensive hydration of meta-basalt with water accommodated first in nominally anhydrous phases like bridgmanite, Ca-perovskite and NAL phase, but especially in dense SiO2 phases (stishovite and CaCl2-type) that can host at least 3 wt% water (∼0.6 wt% in bulk crust).Lithospheric slabs are expected to slow down and deform in the transition zone due to the interplay among the many factors affecting buoyancy and plate rheology, potentially trapping slabs before they descend into the lower mantle [7]. If colder, water-bearing slabs heat up by as little as a few hundred degrees in the transition zone, hydrous phases in the slab mantle will break down to wadsleyite or ringwoodite-bearing assemblages, and a hydrous fluid (Fig. 1a). Wadselyite and ringwoodite can themselves accommodate significant amounts of water and so hydrated portions of the slab mantle would retain ∼1 wt% water. A hydrous ringwoodite inclusion in a sublithospheric diamond with ∼1.5 wt% H2O may provide direct evidence for this process [8].But no matter if slabs heat up or not in the transition zone, as they penetrate into the lower mantle phase D, superhydrous phase B or ringwoodite in the slab mantle will dehydrate at ∼700–800 km due to another deep trough, or second ‘choke point’, transforming into an assemblage of nominally anhydrous minerals dominated by bridgmanite (∼75 wt%) with, relatively, a much lower bulk water storage capacity (< ∼0.1 wt%) [9] (Fig. 1a). Water released from the slab mantle should lead to melting at the top of the lower mantle [10], and indeed, low shear-wave velocity anomalies at ∼700–800 km below North America may be capturing such dehydration melting in real time [11].The fate of the hydrous fluids/melts released from the slab in the deep transition zone and shallow lower mantle determines how much water slabs can carry deeper into the lower mantle. Presumably water is released from regions of the slab mantle where it was originally deposited, like the fractures and faults that formed in the slab near the surface [3]. If hydrous melts can migrate into surrounding water-undersaturated peridotite within the slab, then water should dissolve into bridgmanite and coexisting nominally anhydrous phases (Ca-perovskite and ferropericlase) until they are saturated (Fig. 1b). And because bridgmanite (water capacity ∼0.1 wt%) dominates the phase assemblage, the slab mantle can potentially accommodate much or all of the released water depending on details of how the hydrous fluids migrate, react and disperse. If released water is simply re-dissolved into the slab mantle in this way then it could be transported deeper into the mantle mainly in bridgmanite, possibly to the core–mantle boundary. Water solubility in bridgmanite throughout the mantle pressure-temperature range is not known, so whether water would partially exsolve as the slab moves deeper stabilizing a melt or another hydrous phase, or remains stable in bridgmanite as a dispersed, minor component, remains to be discovered.Another possibility is that the hydrous fluids/melts produced at the second choke point in the slab mantle at ∼700 km migrate out of the slab mantle, perhaps along the pre-existing fractures and faults where bridgmanite-rich mantle should already be saturated, and into either oceanic crust or ambient mantle (Fig. 1b). If the hydrous melts move into ambient mantle, water would be consumed by water-undersaturated bridgmanite, leading to net loss of water from the slab to the upper part of the lower mantle, perhaps severely diminishing the slab’s capacity to transport water to the deeper mantle and core. But what if the water released from slab mantle migrates into the subducting, previously dehydrated, slab crust?Although slab crust is expected to be largely dehydrated in the upper mantle, changes in its mineralogy at higher pressures gives it the potential to host and carry significant quantities of water to the core–mantle boundary. Studies have identified a number of hydrous phases with CaCl2-type structures, including δ-AlOOH, ϵ-FeOOH and MgSiO2(OH)2 (phase H), that can potentially stabilize in the slab crust in the transition zone or lower mantle. Indeed, these phases likely form extensive solid solutions such that an iron-bearing, alumina-rich, δ-H solid solution should stabilize at ∼50 GPa in the slab crust [12], but only after the nominally anhydrous phases in the crust, (aluminous bridgmanite, stishovite, Ca-perovskite and NAL phase) saturate in water. Once formed, the δ-H solid solution in the slab crust may remain stable all the way to the core mantle boundary if the slab temperature remains well below the mantle geotherm otherwise a hydrous melt may form instead [12] (Fig. 1a). But phase δ-H solid solution and the other potential hydrated oxide phases, intriguing as they are as potential hosts for water, may not be the likely primary host for water in slab crust. Recent studies suggest a new potential host for water—stishovite and post-stishovite dense SiO2 phases [13,14].SiO2 minerals make up about a fifth of the slab crust by weight in the transition zone and lower mantle [15] and recent experiments indicate that the dense SiO2 phases, stishovite (rutile structure—very similar to CaCl2 structure) and CaCl2-type SiO2, structures that are akin to phase H and other hydrated oxides, can host at least 3 wt% water, which is much more than previously considered. More importantly, these dense SiO2 phases apparently remain stable and hydrated even at temperatures as high as the lower mantle geotherm, unlike other hydrous phases [13,14]. And as a major mineral in the slab crust, SiO2 phases would have to saturate with water first before other hydrous phases, like δ-H solid solution, would stabilize. If the hydrous melts released from the slab mantle in the transition zone or lower mantle migrate into slab crust the water would dissolve into the undersaturated dense SiO2 phase (Fig. 1b). Thus, hydrated dense SiO2 phases are possibly the best candidate hosts for water transport in slab crust all the way to the core mantle boundary due to their high water storage capacity, high modal abundance and high-pressure-temperature stability.Once a slab makes it to the core–mantle boundary region, water held in the slab crust or the slab mantle may be released due to the high geothermal gradient. Heating of slabs at the core–mantle boundary, where temperatures may exceed 3000°C, may ultimately dehydrate SiO2 phases in the slab crust or bridgmanite (or δ-H) in the slab mantle, with released water initiating melting in the mantle and/or reaction with the core to form hydrated iron metal and super oxides, phases that may potentially explain ultra-low seismic velocities in this region [1,10]. How much water can be released in this region from subducted lithosphere remains a question that is hard to quantify and depends on dynamic processes of dehydration and rehydration in the shallower mantle, specifically at the two ‘choke points’ in the slab mantle, processes that are as yet poorly understood. What is clear is that subducting slabs have the capacity to carry surface water all the way to the core in a number of phases, and possibly in a phase that has previously seemed quite unlikely, dense SiO2.  相似文献   

18.
Polyphosphonium-based ion bipolar junction transistors     
Erik O. Gabrielsson  Klas Tybrandt  Magnus Berggren 《Biomicrofluidics》2014,8(6)
Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.There has been a recent interest in developing diodes1–4 and transistors4–8 that conduct and modulate ion currents. Such non-linear iontronic components are, for example, interesting as they allow further control of ions in, for instance, electrophoretic drug delivery devices. A range of microfabricated diodes,9–11 transistors,12,13 and circuits9,14 has been constructed using ion-selective membranes. These membranes contain fixed charges of either polarity, compensated by mobile ions of opposite charge (counter-ions). When immersed in an electrolyte, counter-ions can move through the membrane, while ions with the same charge as the fixed charges (co-ions) are repelled. This renders the membrane selective for the counter-ion and can therefore be considered as p- or n-type ion conductors. By combining two membranes of opposite polarity, a bipolar membrane (BM) configuration is obtained15 (Figure 1(a)). The BM junction can be biased by an ion current in the reverse and forward directions, respectively.16,17 This modulates the ion concentration inside the BM, and thus the ionic conductivity, which then results in an current rectification.2,18 In the three-terminal ion bipolar junction transistor12 (IBJT), an ion-selective base (B) is connected to oppositely selective emitter (E) and collector (C), forming two BM configurations (EB and BC) (Figure 1(b)). pnp- and npn-IBJTs have been constructed14 from photolithography patterned poly(styrene sulfonate) (PSS, p-selective) and quaternized poly(vinylbenzyl chloride) (n-selective) as emitter, collector, and base. In these devices, a neutral poly(ethylene glycol) (PEG) electrolyte is typically inserted into the junction to separate the base from the emitter and collector,12 in order to avoid19 electric field enhanced (EFE) water dissociation16 (Figure 1(a)). EFE water dissociation is typically observed in BMs20 and produces water ions inside the BM under reverse bias, which prevents proper IBJT operation. In PEG-IBJTs, the current between the emitter and collector (IC) is thus modulated by controlling the ion concentration inside the PEG-junction.21 Ions are injected or extracted into the junction depending on the bias of the base (VEB). In a npn-IBJT, a positive bias is typically applied between emitter and collector (VEC), thus allowing anions to migrate from the emitter to the collector. In the cut-off mode (Figure 1(c)), a negative bias VEB is applied, resulting in reverse bias of both EB and BC. Cations in the junction will migrate into the base, while anions will primarily migrate into the collector, due to the higher collector bias. This base current (IB) will extract ions from the junction, which decreases the ionic conductivity in the junction resulting in a low IC. Eventually, the resistive characteristics for ion charge transport, between the emitter and collector, will be entirely dominated by the junction. This gives that most of the applied VEC is consumed across the junction with only a minimal voltage potential drop across the emitter and base terminals.Open in a separate windowFIG. 1.(a) The modes of operation for a BM; forward bias (high conduction and ion accumulation), reverse bias (low conduction and ion depletion), and EFE water dissociation (high conduction, formation of ions). (b) Illustrations of an npn-IBJT, with anion-selective emitter (E) and collector (C) forming a junction with a cation-selective base (B). (c) In cut-off mode, the base and collector extract ions from the junction, prohibiting co-ion migration through the base. (d) In active mode, the forward biased EB injects ions into the base, thus allowing anions from the emitter to migrate as co-ions through the base into the collector.In the active-mode of the npn-IBJT (Figure 1(d)), the VEB bias at the base is reversed (i.e., now positive). This causes injection of cations, from the base, and anions, from the emitter, into the junction. As the ion concentration increases, anions from the emitter can start to drift across the junction to the collector, thus a high IC is obtained. The high concentration of ions inside the junction is reflected in a low resistive value for ion transport. This now causes the voltage to drop over the emitter and collector terminals, thus lowering the EB forward bias and the injection of ions from the base. At the collector-junction interface, the extraction of anions produces an ion depletion zone and a corresponding voltage drop. Thus, in the active-mode, the applied VEC is primarily consumed across the emitter and collector terminals and also at the collector-junction interface.The switching speed of an IBJT should be strongly correlated to the distance separating the emitter and collector,14 as this length determines the volume that needs to be filled or emptied with ions causing modulation of ions in the junction. To achieve a fast-switching IBJT, the junction volume, i.e., the collector-emitter separation, should be as small as possible. However, EFE water dissociation must be avoided since this process ruin the IBJT operation. EFE water dissociation is, in part, driven by the appearance of a large potential drop across a small distance, as occurring at the interface of a BM under reverse bias, producing a high electric field that accelerates the forward reaction rate of water auto-dissociation.16 Miniaturization of the collector-emitter distance is therefore problematic, as the separation inside the EB and BC BMs evidently also mush shrink, resulting in higher reverse bias electric fields across the BMs and thus promoting EFE water dissociation. The problem of EFE water dissociation in an IBJT primarily manifests itself in the cut-off mode, as water ions are generated in the reversed biased EB and BC BMs. These ions produce an elevated cut-off IC, and hence deteriorate the IBJTs on–off performance. Here, we report an IBJT, in which the EFE water dissociation is avoided by the use of a novel polyphosphonium-based anion-selective material, which previously has been shown to prevent EFE water dissociation in BM diodes.11 This allows the collector and emitter to directly contact the base without an intermediate PEG-layer. Without the need for a PEG-separator inside the BMs, the collector-emitter distance is reduced to only 2 μm.Polyphosphonium-based npn-IBJTs were produced following the same manufacturing protocol as was reported for polyphosphonium-based ion diodes.11 Conjugated polymer electrodes and cation-selective base was patterned from ∼200 nm thick poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film on polyethylene terephthalate-sheets using photolithography and dry-etching. The base was rendered electronically insulating by chemical overoxidation via exposure to sodium hypochlorite through a mask. A 2 μm thick SU8-layer was patterned on-top of this configuration, with an opening defining the actual junction. 1 μm thick polyphosphonium-based anion-selective emitter and collector were deposited and patterned using photolithography and dry-etching, to overlap with the base at the opening of the SU8. Finally, a second 10 μm thick layer of SU8 was used to seal the junction. The membranes were hydrated by incubation in dH2O for 24 h before any measurements were carried out. Aqueous 0.1M NaCl electrolytes were used during the measurement. All electrical measurements were performed using a Keithley 2602 source meter.The switching characteristics of the npn-IBJT were obtained by applying VEC of 10 V and alternating VEB at ±3 V for various duration of time, see Figure Figure2.2. A periodic 5 s switching with 8 Hz measurement rate was used to record the dynamics of the turn-on/off characteristics of the device. When VEB switches from −3 to +3 V, there is a quick increase in the IB, as ions from the base and emitter migrate into the emitter/base junction. After a delay of ∼0.25 s, IC starts to increase due to the increased ion concentration in the emitter/base junction and the subsequent diffusion of anions into the base. As the IC increases, the IB decreases as the voltage drop between the emitter and base decreases, and after ∼2 s IC reaches 90% of the steady state on-current level. For longer on-switching times, the IB and IC stay stable over 30 s, after which a small increase is observed. This current-drift in both IB and IC is likely due to the contribution of co-ion migration. As cations from the base migrate into the emitter as co-ions, the conductivity in the emitter increases, leading to an increased IC value. This increases the ion concentration at the base, which gives less selective ion injection and thus more cation injection from the base, i.e., a higher IB.Open in a separate windowFIG. 2.Emitter-collector current response as the IBJT is switched between cut-off (VEB=−3 V) and active mode (VEB = 3 V) for VEC = 10 V, at 5 s and 120 s periods.As VEB is switched back to −3 V, there is a sharp negative peak in IE as ions are extracted from the junction, which occur mainly through the base (cations) and collector (anions) terminals. As the ion concentration in the base drops, IC decreases. The transistor turns off to 10% of the value of the steady state on-current within ∼2 s, regardless of the duration of the on-state. The constant turn-off time indicates that ions are not accumulating to a significant extent inside the junction during the on-steady state but are instead constantly transported out of the junction. When all co-ions have been extracted from the junction, the Donnan exclusion prevents subsequent injection of anions into the base, and IC is therefore low. The on/off ratio of IC reaches above 100.A transfer curve was obtained by scanning VEB between −3 and +3 V while keeping VEC at 10 V (Figure 3(a)). As expected, both IC and IB remain low for negative VEB. In this range, both EB and BC are biased in reverse direction. As VEB turns positive, the EB configuration is switched into forward bias and ions are injected into the junction. This leads to a linear increase in IC vs. VEB. For the reverse scan, a minor hysteresis is observed for both the IC and IB scans, again probably due to the contribution of co-ion migration due to long time operation of the device.Open in a separate windowFIG. 3.Transfer and output curves. (a) The transfer curve is low for negative VEB and increases linearly for positive VEB with approximately zero threshold. (b) The output curves show IC saturating with respect of VEC for positive VEB.The transistor output characteristics were obtained by scanning VEC at different VEB values (Figure 3(b)). The saturation regime, i.e., the bias mode was both EB and BC are in forward bias, was avoided as this has negative impact on the stability of the device. As reported for previous IBJT devices, the output characteristics show a clear saturation behaviour of IC across the entire range of VEC. Further, the IC increases linearly with VEB. The increase of both IC and IB when operating for extended periods of time in the active mode is again attributed to the addition and inclusion of co-ions in the junction. The current gain (IC/IB) at VEC = 10 V decreases with VEB and reaches 43.9, 17.9, and 10.7 for VEB = 1 V, 2 V, and 3 V, respectively. For higher base bias voltages, the ion concentration increases in the junction and thus the injection selectivity decreases.In comparison with previously reported IBJTs,12,14,21 the lack of a neutral electrolyte layer in the junction has an overall positive effect on the device characteristics. Main performance improvements are found in a decrease in the turn-on time from 9 s (for npn-IBJT21) to 2 s, for devices with comparable junction widths and heights. The main contribution to the improved switching speed is likely the decreased length between the emitter and collector. Interestingly, simulations have shown that an extended space charge region (ESCR), for a PEG-IBJT in cut-off mode, can extend several micrometers away from the collector.22 Thus, a PEG-IBJT with an emitter-collector separation of single micrometers should show an increased cut-off current due to the ESCR overlapping in the junction. However, by omitting the PEG in the junction, the ESCR is reduced due to screening from the fixed charges in the BM layers. This enables the IBJT, reported here, to operate with retained low cut-off currents. On-off ratios and ion current gains are approximately equal to previous IBJTs,12,14,21 at above 100 and 10, respectively. The on–off ratio and ion current gain are more dependent on the selectivity of the membranes and the charge of the junction.Further, the need to separate the layers in a PEG-IBJT puts high demands on the patterning resolution and alignment accuracy to reduce the separation between emitter/collector and base. As polyphosphonium allows the IBJT to be built without separation of layers, miniaturization of the junction is relatively easier to obtain. The switching speed can potentially be further improved by retaining the base material between the emitter and collector (see Figure 1(b)), thus allowing for a more direct pathway for IC. This design would, however, require a much more accurate layer alignment or that the base patterned on top of the emitter and collector layers. In general, such modifications of device geometry are simpler to accomplish with the non-EFE water dissociating polyphosphonium as fewer active layers are used, suggesting a further use of polyphosphonium to improve switching speed and miniaturization of IBJTs. Such further advancement in IBJT performance would be welcomed, for example, in the continued work towards complex ionic circuits14 to regulate signalling in bioelectronics and in drug delivery applications, in which generation of dynamic and complex gradients, at high spatial resolution, is of generic interest.  相似文献   

19.
Enhancement of biosensing performance in a droplet-based bioreactor by in situ microstreaming     
Olivier Ducloux  Elisabeth Galopin  Farzam Zoueshtiagh  Alain Merlen    Vincent Thomy 《Biomicrofluidics》2010,4(1)
A droplet-based micro-total-analysis system involving biosensor performance enhancement by integrated surface-acoustic-wave (SAW) microstreaming is shown. The bioreactor consists of an encapsulated droplet with a biosensor on its periphery, with in situ streaming induced by SAW. This paper highlights the characterization by particle image tracking of the speed distribution inside the droplet. The analyte-biosensor interaction is then evaluated by finite element simulation with different streaming conditions. Calculation of the biosensing enhancement shows an optimum in the biosensor response. These results confirm that the evaluation of the Damköhler and Peclet numbers is of primary importance when designing biosensors enhanced by streaming.It has been pointed out that biosensing performances can be limited by the diffusion of the analytes near the sensing surface.1 In the case of low Peclet number hydrodynamic flows, typical of microfluidic systems, molecule displacements are mainly governed by diffusive effects that affect time scales and sensitivity. To overcome this problem, the enhancement of biosensor performance by electrothermal stirring within microchannels was first reported by Meinhart et al.2 Other authors3, 4 numerically studied the analyte transport as a function of the position of a nanowire-based sensor inside a microchannel, stressing on the fact that the challenge for nanobiosensors is not the sensor itself but the fluidic system that delivers the sample. Addressing this problem, Squires et al.5 developed a simple model applicable to biosensors embedded in microchannels. However, the presented model is limited to the case of a steady flow. The use of surface-acoustic waves (SAWs) for stirring in biomicrofluidic and chemical systems is becoming a popular investigation field,6, 7, 8, 9 especially to overcome problems linked to steady flows by enhancing the liquid∕surface interaction.1, 10, 11 The main challenges that need to be addressed when using SAW-induced stirring are the complexity of the flow and its poor reproducibility. However, some technical solutions were proposed to yield a simplified microstreaming. Yeo et al. presented a centrifugation system based on SAW that produces the rotation of the liquid in a droplet in a reproducible way by playing on the configuration of the transducers and reflectors,12 and presented a comprehensive experimental study of the three-dimensional (3D) flow that causes particle concentration in SAW-stirred droplets,13 revealing the presence of an azimuthal secondary flow in addition to the main vortexlike circular flow present in acoustically stirred droplets. The efficiency of SAW stirring in microdroplets to favorably cope with mass transport issues was finally shown by Galopin et al.,14 but the effect of the stirring on the analyte∕biosensor interaction was not studied. It is expected to overcome mass transport limitations by bringing fresh analytes from the bulk solution to the sensing surface.The studied system, described in Fig. Fig.1,1, consists of a microliter droplet microchamber squeezed between a hydrophobic piezoelectric substrate and a hydrophobic glass cover. Rayleigh SAWs are generated using interdigitated transducers (interdigital spacing of 50 μm) laid on an X-cut LiNbO3 substrate.1, 15, 16 The hydrophobicity of the substrate and the cover are obtained by grafting octadecyltrichlorosilane (OTS) self-assembled monolayers (contact angle of 108° and hysteresis of 9°). To do so, the surface is first hydroxylized using oxygen plasma (150 W, 100 mT, and 30 sccm3 O2) during 1 min and then immersed for 3 h into a 1 mM OTS solution with n-hexane as a solvent.Open in a separate windowFigure 1(a) General view of the considered system. (b) Mean value of the measured speeds within the droplet as a function of the inlet power before amplification.When Rayleigh waves are radiated toward one-half of the microchamber, a vortex is created in the liquid around an axis orthogonal to the substrate due to the momentum transfer between the solid and the liquid. This wave is generated under the Rayleigh angle into the liquid.Speed cartographies of the flow induced in the droplet are realized using the particle image tracking technique for different SAW generation powers. To do so, instantaneous images of the flow are taken with a high-speed video camera at 200 frames∕s and an aperture time of 500 μs on a 0.25 μl droplet containing 1 μm diameter fluorescent particles. Figure Figure11 shows the mean speed measured in the droplet as a function of the inlet power. The great dependence of the induced mean speed with the SAW power enables a large range of flow speeds in the stirred droplet. Moreover, the flow was visualized with a low depth of field objective. It was found to be circular and two dimensional (2D) in a large thickness range of the droplet.The binding of analytes to immobilized ligands on a biosensor is a two step process, including the mass transport of the analyte to the surface, followed by a complexation step,AbulkkmAsurface+Bka,kdAB(1)with km as the constant rate for mass transport from and to the sensor, and ka and kd as the constant rates of association and dissociation of the complex.At the biosensor surface, the reaction kinetics consumes analytes but their transport is limited by diffusive effects. In this case, the Damköhler number brings valuable information by comparing these two effects. Calling the characteristic time of reaction and diffusion, respectively, τC and τM, the mixing time in diffusion regime can be approximated by τMh2D with D as the diffusion coefficient and h a characteristic length of the microchannel. Calling RT the ligand concentration on the surface in mole∕m2, the Damköhler number (Da) can be written asDa=τMτC=kaRThD.(2)Depending on the type of reaction, the calculation of Da helps determine if a specific biointeraction will benefit from a mass SAW-based microstreaming. If the Damköhler number is low, the reaction is slow compared to mass transport and the reaction will not significantly benefit from microstirring. For example, the hybridization of 19 base single stranded DNA in a microfluidic system with a characteristic length of 500 μm is characterized by a Damköhler number of 0.07 and is therefore not significantly influenced by mass transport. On the contrary, the binding of biotin to immobilized streptavidin is characterized by a Da number of approximately 104. In this case, the stirring solution will significantly improve the reaction rate.COMSOL numerical simulations were carried out to study the efficiency of the SAW stirring in the case of a droplet-based microbioreactor with a diameter of 1 mm. Assuming a 2D flow, the simulated model takes into account the convective and diffusive effects in the analyte-carrying fluid and the binding kinetics on the biosensor surface. This approach was thoroughly developed by Meinhart et al.2On the biosensor surface, the following equations are solved:Bt=kacs(RTB)kdB,(3)Bt=D|cy|y=0(4)with c as the local concentration of analytes in the droplet and B as the surface concentration of bound analytes on the biosensor surface. Simulation results show that a depleted zone is formed near the biosensor in the case of an interaction without stirring. This zone is characterized by a low concentration of analytes and results from the trapping of analytes on the biosensor surface, thus creating a concentration gradient on the vicinity of the biosensor. When stirring is applied, the geometry of the depleted zone is modified, as it is pushed in the direction of the flow. The geometry of the depleted zone then depends on many parameters, among which the diffusion coefficient D, the speed distribution of the flow (not only near the biosensor but also in the whole microfluidic system), and the reaction kinetics on the biosensor. In our case, which is assimilated to a simple circular flow, the depleted zone reaches a permanent state consisting of an analyte-poor layer situated in the exterior perimeter of the stirred droplet. The diffusion of analytes is then limited again by diffusion from the inner part of the droplet toward its exterior perimeter (see Fig. Fig.22).Open in a separate windowFigure 2(a) Mean concentration of bound analytes vs time for different mean flow speeds. (b) The obtained concentration profiles with and without circular stirring, t=10 000 s.The initial analyte and receptor concentrations are, respectively, 0.1 nM in the solution and 3.3×10−3 nM m on the biosensor surface, the diffusion coefficient is D=10−11 m2 s−1, and the reaction constants are ka=106 M−1 s−1 and kd=10−3 s−1. Simulations show that the mean concentration of bound analytes highly increases with the flow speed, improving the efficiency of the biosensing device. To evaluate the benefits of in situ microstreaming with SAW, the same simulations were conducted for Da numbers ranging from 104 to 108 M−1∕s, by ranging the diffusion coefficient from 4×10−12 to 4×10−9 m2∕s, and the association coefficient ka from 104 to 108 M−1∕s. The enhancement factor of analyte capture, defined as the ratio of the binding rate with streaming B and the binding rate without streaming B0, is plotted in Fig. Fig.33 for different values of Da. Calculations are done in the case of a mean flow speed of 0.5 mm∕s.Open in a separate windowFigure 3(a) Enhancement factor (defined as the ratio between binding rate with streaming B and binding rate without streaming B0) for different Damkhöler numbers and (b) normalized enhancement factor for different Peclet numbers.One can notice the saturation of the enhancement factor curve for large value of Da to the value of 3.5 for high Da. This can be explained by the fact that for large kaDa ratios, the analytes, which normally require penetration in the depleted zone by diffusion, do not have time to interact with the biosensor when they pass in the vicinity of its surface. The efficiency of the streaming is then reduced for large values of Da. In the case of our specific flow configuration, the enhancement factor reaches 3.2 for the interaction of streptavidin on immobilized biotin (Da=103).The reported simulation results can be compared to an experimental value obtained using the droplet-based surface plasmon resonance sensor streamed in situ using SAW reported by Yeo et al.12 By monitoring the streptavidin∕biotin binding interaction on an activated gold slide, they showed that SAW stirring brings an improvement factor of more than 2. This difference can be accounted to the high complexity of the induced 3D flow, which was modeled in a simple manner in our calculations.Other factors must be taken into account when optimizing the improvement factor, such as the flow velocity and the characteristic length of the mixing. To do so, the Peclet number allows the comparison of the convective and diffusive effects.17 For δC a typical variation in concentration on the distance h, the Peclet number is given byPe=UhD.(5)A significantly high Peclet number causes a decrease in biosensing efficiency as the analytes do not have enough time to interact with the biosensing surface by diffusion through the analyte-poor layer. On the contrary, the case of a low Peclet number corresponds to the diffusion-limited problem. Therefore, for each Damköhler number, there is a Peclet number optimizing this factor. To illustrate this fact, Fig. Fig.3b3b shows the calculation of the enhancement factor as a function of the Peclet number for a given Da.In this paper, we showed that surface loading of typical analytes on a droplet-based biosensor can be highly increased by SAW microstirring. The system permits the enhancement of the biosensing performances by the continuous renewal of the analyte-carrying fluid near the sensing surface. Thanks to mean flow speeds measured up to 1800 μm∕s, the SAW microstreaming can be beneficial to the biosensing of a large range of analyte∕ligand interactions. In addition to the biosensing performance improvement, such a method can be easily integrated in micro-micro-total-analysis systems, which makes it a convenient tool for liquid handling in future biochips.  相似文献   

20.
Mixed control of uncertain jumping time-delay systems     
Magdi S. Mahmoud  Fouad M. AL-Sunni  Yan Shi   《Journal of The Franklin Institute》2008,345(5):536-552
In this paper, we investigate a class of linear continuous-time systems with Markovian jump parameters. An integral part of the system dynamics is a delayed state with time-varying and bounded delays. The jumping parameters are modeled as a continuous-time, discrete-state Markov process. Employing norm-bounded parametric uncertainties and utilizing the second-method of Lyapunov, we examine the problem of designing a mixed controller which minimizes a quadratic performance measure while satisfying a prescribed -norm bound on the closed-loop system. It is established that sufficient conditions for the existence of the mixed controller and the associated performance upper bound could be cast in the form of linear matrix inequalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号