首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Earth surface vibrations generated by passing vehicles, excavation equipment, footsteps, etc., attract increasing attentions in the research community due to their wide applications. In this paper, we investigate the periodic vibration source localization problem, which has recently shown significance in excavation device detection and localization for urban underground pipeline network protection. An intelligent propagation distance estimation algorithm based on a novel fundamental frequency energy distribution (FBED) feature is developed for periodic vibration signal localization. Contributions of the paper lie in three aspects: 1) a novel frequency band energy distribution (FBED) feature is developed to characterize the property of vibrations at different propagation distances; 2) an intelligent propagation distance estimation model built on the FBED feature with machine learning algorithms is proposed, where for comparisons, the support vector machine (SVM) for regression and regularized extreme learning machine (RELM) are used; 3) a localization algorithm based on the distance-of-arrival (DisOA) estimation using three piezoelectric transducer sensors is given for source position estimation. To testify the effectiveness of the proposed algorithms, case studies on real collected periodic vibration signals generated by two electric hammers with different fundamental frequencies are presented in the paper. The transmission medium is the cement road and experiments on vibration signals recorded at different propagation distances are conducted.  相似文献   

2.
This paper considers the identification problem of bilinear systems with measurement noise in the form of the moving average model. In particular, we present an interactive estimation algorithm for unmeasurable states and parameters based on the hierarchical identification principle. For unknown states, we formulate a novel bilinear state observer from input-output measurements using the Kalman filter. Then a bilinear state observer based multi-innovation extended stochastic gradient (BSO-MI-ESG) algorithm is proposed to estimate the unknown system parameters. A linear filter is utilized to improve the parameter estimation accuracy and a filtering based BSO-MI-ESG algorithm is presented using the data filtering technique. In the numerical example, we illustrate the effectiveness of the proposed identification methods.  相似文献   

3.
A fault tolerant control scheme for actuator and sensor faults is proposed for a tilt-rotor unmanned aerial vehicle (UAV) system. The tilt-rotor UAV has a vertically take-off and landing (VTOL) capability like a helicopter during the take-off & landing while it could cruise with a high speed as a conventional airplane flight mode. A dual system in the flight control computer (FCC) and the sensor is proposed in this study. To achieve a high reliability, a fault tolerant flight control system is required for the case of actuator or sensor fault. For the actuator fault, the fault tolerant control scheme based on model error control synthesis is presented. A designed fault tolerant control scheme does not require system identification process and it provides an effective reconfigurability without fault detection and isolation (FDI) process. For the sensor fault, the fault tolerant federated Kalman filter is designed for the tilt-rotor UAV system. An FDI algorithm is applied to the federated Kalman filter in order to improve the accuracy of the state estimation even when the sensor fails. For a linearized six-degree-of-freedom linear model and nonlinear model of the tilt-rotor UAV, numerical simulation and process-in-the-loop simulation (PILS) are performed to demonstrate the performance of the proposed fault tolerant control scheme.  相似文献   

4.
Detection and estimation of abnormalities for distributed parameter system (DPS) have wide applications in industry, e.g., battery thermal fault diagnosis, quality monitoring of hot-rolled strip laminar cooling process. In this paper, the abnormal spatio-temporal (S-T) source detection and estimation problem for a linear unstable DPS is first studied. The proposed methodology consists of two steps: first, an abnormality detection filter (ADF) which generates a residual signal for abnormality detection in the time domain is constructed using pointwise measurement; Then, an adaptive Luenberger-type PDE observer including an adaptive estimation algorithm is designed and triggered only when an alarm raises from the ADF. Theoretic analysis based on the spatial domain decomposition approach is presented to show the convergence of the estimation errors. Finally, an illustrative example is presented to show the performance of the proposed method.  相似文献   

5.
This paper investigates the event-based state and fault estimation problem for stochastic nonlinear system with Markov packet dropout. By introducing the fictitious noise, the fault is augmented to the system state. Then combining the unscented Kalman filter (UKF) with event-triggered and Markov packet dropout, the modified UKF is proposed to estimate the state and fault. Meanwhile, the stochastic stability of the proposed filter is also discussed. Finally, two simulation results illustrate the performance of the proposed method.  相似文献   

6.
This study proposes fractional-order Kalman filers using Tustin generating function and the average value of fractional-order derivative to estimate the state of fractional-order systems involving colored process and measurement noises. By Tustin generating function, a fractional-order differential equation is provided to approximate the dynamics of a continuous-time fractional-order system and colored process and measurement noises. By constructing an augmented system with respect to state, the process noise and the measurement noise to deal with colored noises, the fractional-order Kalman filter using Tustin generating function is proposed to improve the estimation accuracy. Besides, the average value of fractional-order derivative is proposed, and the corresponding fractional-order Kalman filter by the augmented system method is presented to reduce estimation error. Finally, three illustrative examples are given to illustrate that the proposed two kinds of Kalman filters are more effective than fractional-order Kalman filter based on Gru¨nwald–Letnikov definition.  相似文献   

7.
Health monitoring of nonlinear systems is broadly concerned with the system health tracking and its prediction to future time horizons. Estimation and prediction schemes constitute as principle components of any health monitoring technique. Particle filter (PF) represents a powerful tool for performing state and parameter estimation as well as prediction of nonlinear dynamical systems. Estimation of the system parameters along with the states can yield an up-to-date and reliable model that can be used for long-term prediction problems through utilization of particle filters. This feature enables one to deal with uncertainty issues in the resulting prediction step as the time horizon is extended. Towards this end, this paper presents an improved method to achieve uncertainty management for long-term prediction of nonlinear systems by using particle filters. In our proposed approach, an observation forecasting scheme is developed to extend the system observation profiles (as time-series) to future time horizon. Particles are then propagated to future time instants according to a resampling algorithm instead of considering constant weights for the particles propagation in the prediction step. The uncertainty in the long-term prediction of the system states and parameters are managed by utilizing dynamic linear models for development of an observation forecasting scheme. This task is addressed through an outer adjustment loop for adaptively changing the sliding observation injection window based on the Mahalanobis distance criterion. Our proposed approach is then applied to predicting the health condition as well as the remaining useful life (RUL) of a gas turbine engine that is affected by degradations in the system health parameters. Extensive simulation and case studies are conducted to demonstrate and illustrate the capabilities and performance characteristics of our proposed and developed schemes.  相似文献   

8.
Accurate and effective state estimation is essential for nonlinear fractional system, since it can provide some vital operation information about the system. However, inevitably missing measurements and additive uncertainty in the gain will affect the performance of estimation result. Thus, in this paper, in order to deal with these problems, a novel robust extended fractional Kalman filter (REFKF) is developed for states estimation of nonlinear fractional system, by which the states can be estimated accurately even with missing measurements. Finally, simulation results are provided to demonstrate that the proposed method can achieve much better estimation performance than the conventional extended fractional Kalman filter (EFKF).  相似文献   

9.
In this paper, a hierarchical estimator combined with the nonlinear observer and particle filter (PF) is proposed to accurately estimate the vehicle state and tire forces of distributed in-wheel motor drive electric vehicles (DIMDEVs) when the traditional tire models are not available. The proposed estimator consists of lower and upper layers. The lower layer, i.e. longitudinal tire force nonlinear observer (LTFNO) aims at estimating the longitudinal force based on the available drive/brake torques and rotational speed of wheels. The convergence of LTFNO is proved by the invariant set principle. The upper layer receives these estimated longitudinal tire forces from LTFNO and estimates the vehicle state including lateral tire forces based on an expert model (EM). The designed EM utilizes basic knowledge and rules about tire characteristics to approximate the unknown lateral tire force. The upper estimator combines with EM (EEM) to further improve the accuracy. The EEM takes the modeling errors and disturbances into account and avoids the usage of complex established tire models. Then PF is applied in the upper layer to complete the estimation, which only needs measurable longitudinal/lateral accelerations and yaw rate signals. Finally, the effectiveness of the designed hierarchical estimator is verified by Carsim and Simulink co-simulations. The results show the proposed strategy can accurately estimate the vehicle state and tire forces in real-time.  相似文献   

10.
This paper proposes a novel trust-based false data detection method for power systems under false data injection attacks (FDIAs). In order to eliminate the interference posed by false data to the power system in the state estimation process, a trust model is first established to estimate the reliability of the system bus. Then an algorithm is proposed to update the bus trust value, when all the trust value of neighbor buses at one bus node are quite low, then this bus is diagnosed as a malicious node and the false data are detected. This method guarantees that the power systems can estimate the state accurately against FDIAs based on the trust of bus. The simulations on the benchmark IEEE 14-bus, IEEE 30-bus and IEEE 57-bus test systems are used to demonstrate the feasibility and effectiveness of proposed algorithm.  相似文献   

11.
This paper is concerned with the adaptive control problem for a class of linear discrete-time systems with unknown parameters based on the distributed model predictive control (MPC) method. Instead of using the system state, the state estimate is employed to model the distributed state estimation system. In this way, the system state does not have to be measurable. Furthermore, in order to improve the system performance, both the output error and its estimation are considered. Moreover, a novel Lyapunov functional, comprised of a series of distributed traces of estimation errors and their transposes, has been presented. Then, sufficient conditions are obtained to guarantee the exponential ultimate boundedness of the system as well as the asymptotic stability of the error system by solving a nonlinear programming (NP) problem subject to input constraints. Finally, the simulation examples is given to illustrate the effectiveness and the validity of the proposed technique.  相似文献   

12.
The focus of this paper is on the detection and estimation of parameter faults in nonlinear systems with nonlinear fault distribution functions. The novelty of this contribution is that it handles the nonlinear fault distribution function; since such a fault distribution function depends not only on the inputs and outputs of the system but also on unmeasured states, it causes additional complexity in fault estimation. The proposed detection and estimation tool is based on the adaptive observer technique. Under the Lipschitz condition, a fault detection observer and adaptive diagnosis observer are proposed. Then, relaxation of the Lipschitz requirement is proposed and the necessary modification to the diagnostic tool is presented. Finally, the example of a one-wheel model with lumped friction is presented to illustrate the applicability of the proposed diagnosis method.  相似文献   

13.
For target tracking systems, the probability of detecting a target is difficult to determine, and the process noise often has non-Gaussian heavy-tailed characteristics owing to interference from outliers. To address the issues associated with single target tracking within clutters in scenarios with an unknown detection probability and heavy-tailed process noise, this paper presents a variational Bayesian-based adaptive probabilistic data association filter (VB-APDAF). The beta distribution, Pearson type VII distribution and multinomial distribution are used to model the detection probability, the process noise, and the association events, respectively. To guarantee the conjugation, a novel parameter estimation strategy is employed. In this strategy, the previous state is introduced in the state update process to construct the joint probability density function of parameters to be estimated and data set. The VB framework is used to estimate the target state, detection probability, and associated events. An experiment was performed under simulated conditions to demonstrate the effectiveness of the proposed filter.  相似文献   

14.
This study considers state and fault estimation for a switched system with a dual noise term. A zonotopic and Gaussian Kalman filter for state estimation is designed to obtain state estimation interval in the presence of both stochastic and unknown but bounded (UBB) uncertainties. The switching state and fault state of the system are distinguished by detecting whether the system measurement date is within the bounds of its predicted output. Once the switched time is detected in the system, the filter zonotopic and Gaussian Kalman functions are initialized. Once the fault time is detected, a zonotopic and Gaussian Kalman filter-based fault estimator is constructed to estimate the corresponding faults. Finally, a numerical simulation is presented to demonstrate the accuracy and effectiveness of the proposed algorithm.  相似文献   

15.
This paper proposes a novel particle filter based gradient iterative algorithm for the identification of dual-rate nonlinear systems. The novel particle filter is applied to estimate the missing outputs, and the measurable outputs are utilized to adjust the weights of particles during each interval of the slow sampled rate. Then the missing outputs and the unknown parameters can be estimated iteratively by the novel particle filter based gradient iterative algorithm. The simulation results indicate that the proposed method is more effective than the classical auxiliary model method.  相似文献   

16.
This paper considers the state estimation problem for a class of discrete-time non-homogeneous jump Markov linear systems (JMLSs), where the transition probability matrix (TPM) is assumed to be time-variant and takes value in a finite set randomly at each time step. To show the simplicity brought by the finite-valued hypothesis, the optimal recursion for the posterior TPM probability density functions conditioned on that the TPM belongs to a continuous set is firstly derived. Then, we naturally incorporate the proposed TPM estimation into the recursion of system state. Two interacting multiple-model (IMM)-type approximation stages are employed to avoid the exponential computational requirements. The resulting filter reduces to the IMM filter when the number of candidate TPMs is unity. A meaningful example is presented to illustrate the effectiveness of our method.  相似文献   

17.
In this paper, we present a secure distributed estimation strategy in networked systems. In particular, we consider distributed Kalman filtering as the estimation method and Paillier encryption, which is a partially homomorphic encryption scheme. The proposed strategy protects the confidentiality of the transmitted data within a network. Moreover, it also secures the state estimation computation process. To this end, all the algebraic calculations needed for state estimation in a distributed Kalman filter are performed over the encrypted data. As Paillier encryption only deals with integer data, in general, this, in turn, provides significant quantization error in the computation process associated with the Kalman filter. However, the proposed estimation approach handles quantized data in an efficient way. We provide an optimality and convergence analysis of our proposed method. It is shown that state estimation and a covariance matrix associated with the proposed method remain with a certain small radius of those of a conventional centralized Kalman filter. Simulation results are given to further demonstrate the effectiveness of the proposed scheme.  相似文献   

18.
The performance of the current state estimation will degrade in the existence of slow-varying noise statistics. To solve the aforementioned issues, an improved strong tracking maximum correntropy criterion variational-Bayesian adaptive Kalman filter is presented in this paper. First of all, the inverse-Wishart distribution, as the conjugate-prior, is adopted to model the unknown and time-varying measurement and process noise covariances, then the noise covariances and system state are estimated via the variational Bayesian method. Secondly, the multiple fading-factors are obtained and evaluated to modify the prediction error covariance matrix to address the problems associated with inaccurate error estimation. Finally, the maximum correntropy criterion is employed to correct the filtering gain, which improves the filtering performance of the proposed algorithm. Simulation results show that the proposed filter exhibits better accuracy and convergence performance compared to other existing algorithms.  相似文献   

19.
This paper proposes solutions that reduce the inaccuracy of distributed state estimation and consequent performance deterioration of distributed model predictive control caused by faults and inaccurate models. A distributed state estimation method for large-scale systems is introduced. A local state estimation approach considers the uncertainty of neighbor estimates, which can improve the state estimation accuracy, whereas it keeps a low network communication burden. The method also incorporates the uncertainty of model parameters which improves the performance when using simplified models. The proposed method is extended with multiple models and estimates the probability of nominal and fault behavior models, which creates a distributed fault detection and diagnosis method. An example with application to the building heating control demonstrates that the proposed algorithm provides accurate state estimates to a controller and detects local or global faults while using simplified models.  相似文献   

20.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号