首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In the context of the emphasis on inquiry teaching in science education, this study looks into how pre-service elementary teachers understand and practise science inquiry teaching during field experience. By examining inquiry lesson preparation, practice, and reflections of pre-service elementary teachers, we attempt to understand the difficulties they encounter and what could result from those difficulties in their practice. A total of 16 seniors (fourth-year students) in an elementary teacher education program participated in this study. In our findings, we highlight three difficulties ‘on the lesson’ that are related to teaching practices that were missing in the classrooms: (1) developing children’s own ideas and curiosity, (2) guiding children in designing valid experiments for their hypotheses, (3) scaffolding children’s data interpretation and discussion and another three difficulties ‘under the lesson’ that are related to problems with the pre-service teachers’ conceptualization of the task: (4) tension between guided and open inquiry, (5) incomplete understanding of hypothesis, and (6) lack of confidence in science content knowledge. Based on these findings, we discuss how these difficulties are complexly related in the pre-service teachers’ understandings and action. Several suggestions for science teacher education for inquiry teaching, especially hypothesis-based inquiry teaching, are then explored.  相似文献   

2.
The complexity of science teaching requires science teachers to encounter a range of tasks. Some tasks are perceived as stressful while others are not. This study aims to investigate the extent to which different teaching situations lead to different stress levels. It also aims to identify the easiest and most difficult conditions to be regarded as stressful conditions by science teachers. An occupational stress inventory of 25 items developed by Okebukola (1988) validation of the occupational stress inventory for science teachers. Science Teacher, was used to measure the science teachers’ stress level in science teaching. A four point Likert scale ranging from 1 – ‘no stress at all’ to 4 – ‘extreme stress’ was used. Fifty-eight Malaysian secondary science teachers participated in the survey in which six volunteered to participate in the interview study. The data was then analyzed using the Rasch model to measure the level of stress caused by different kinds of stressful conditions. Even though ‘overloaded science syllabus’ was identified to be the basis of multiple stressful conditions, it was, however, difficult for the respondents to regard it as a stressful condition. On the other hand, the respondents found that ‘having to teach difficult science topics’ is easiest to be regarded as a stressful condition. It was shown that even though ‘overloaded science syllabus’ is the starting point for stress caused by multiple conditions, due to the availability of coping strategies which can be employed by the respondents, the stressor is minor in causing stress among teachers. On the other hand, when teachers lack the availability of coping strategies dealing with teaching difficult science topics, they easily feel stressful. One of the main recommendations to overcome stressful conditions is to provide the science teachers ‘topic specific pedagogy’ during in-service training.  相似文献   

3.
This study explored the effects that the incorporation of nature of science (NoS) activities in the primary science classroom had on children’s perceptions and understanding of science. We compared children’s ideas in four classes by inviting them to talk, draw and write about what science meant to them: two of the classes were taught by ‘NoS’ teachers who had completed an elective nature of science (NoS) course in the final year of their Bachelor of Education (B.Ed) degree. The ‘non-NoS’ teachers who did not attend this course taught the other two classes. All four teachers had graduated from the same initial teacher education institution with similar teaching grades and all had carried out the same science methods course during their B.Ed programme. We found that children taught by the teachers who had been NoS-trained developed more elaborate notions of nature of science, as might be expected. More importantly, their reflections on science and their science lessons evidenced a more in-depth and sophisticated articulation of the scientific process in terms of scientists “trying their best” and “sometimes getting it wrong” as well as “getting different answers”. Unlike children from non-NoS classes, those who had engaged in and reflected on NoS activities talked about their own science lessons in the sense of ‘doing science’. These children also expressed more positive attitudes about their science lessons than those from non-NoS classes. We therefore suggest that there is added value in including NoS activities in the primary science curriculum in that they seem to help children make sense of science and the scientific process, which could lead to improved attitudes towards school science. We argue that as opposed to considering the relevance of school science only in terms of children’s experience, relevance should include relevance to the world of science, and NoS activities can help children to link school science to science itself.  相似文献   

4.
The aims of this study were considered under three headings. The first was to elicit misconception that science and physics student teachers (pre-service teachers) had about the terms, ‘‘inertial mass’’, ‘‘gravitational mass’’, ‘‘gravity’’, ‘‘gravitational force’’ and “weight”. The second was to understand how prior learning affected their misconceptions, and whether teachers’ misconceptions affected their students’ learning. The third was to determine the differences between science and physics student teachers’ understanding levels related to mass and gravity, and between their logical thinking ability levels and their attitudes toward physics lessons. A total of 267 science and physics student teachers participated in the study. Data collection instruments included the physics concept test, the logical thinking ability test and physics attitude scale. All instruments were administered to the participants at the end of the 3rd semester of their university years. The physics test consisting of paper and pencil test involving 16 questions was designed, but only four questions were related to mass and gravity; the second test consisted of 10 questions with two stages. The third test however, consisted of 15 likert type items. As a result of the analysis undertaken, it was found that student teachers had serious misconceptions about inertia, gravity, gravitational acceleration, gravitational force and weight concepts. The results also revealed that student teachers generally had positive attitudes toward physics lessons, and their logical thinking level was fairly good.  相似文献   

5.
Teachers in the UK and elsewhere are now expected to foster creativity in young children (NACCCE, 1999; Ofsted, 2003; DfES, 2003; DfES/DCMS, 2006). Creativity, however, is more often associated with the arts than with mathematics. The aim of the study was to explore and document pre-service (in the UK, pre-service teachers are referred to as ‘trainee’ teachers) primary teachers’ conceptions of creativity in mathematics teaching in the UK. A questionnaire probed their conceptions early in their course, and these were supplemented with data from semi-structured interviews. Analysis of the responses indicated that pre-service teachers’ conceptions were narrow, predominantly associated with the use of resources and technology and bound up with the idea of ‘teaching creatively’ rather than ‘teaching for creativity’. Conceptions became less narrow as pre-service teachers were preparing to enter schools as newly qualified, but they still had difficulty in identifying ways of encouraging and assessing creativity in the classroom. This difficulty suggests that conceptions of creativity need to be addressed and developed directly during pre-service education if teachers are to meet the expectations of government as set out in the above documents.  相似文献   

6.
In this study, pre-service teachers facilitated stations at a family science night as a context to learn to identify, assess, and use children’s science ideas. Assessment is already difficult in K-12 classrooms. Assessing learning in informal learning environments adds the complication that participation is largely voluntary. As such, controlling the learners’ participation to systematically assess learning is counter to the intents of informal environments. The pre-service teachers in this study experienced success at teaching science and developed understandings about children’s science ideas. Data included reflective postings, class discussions, observations, artifacts, and photographs. The findings contribute to understanding the value of multiple learning contexts in teacher preparation and lead to implications about leveraging informal science contexts for educating teachers.  相似文献   

7.
The new 1–9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1–9 curriculum framework are also proposed.  相似文献   

8.
This study describes the characteristics of pre-service teachers’ discourse on a WebCT Bulletin Board in their investigations of local streams in an integrated mathematics and science course. A qualitative analysis of data revealed that the pre-service teachers conducted collaborative discourse in framing their research questions, conducting research and writing reports. The science teacher educator provided feedback and carefully crafted prompts to help pre-service teachers develop and refine their work. Overall, the online discourse formats enhance out-of-class communication and support collaborative group work. But the discourse on the critical examination of one another’s point of views rooted in scientific inquiry appeared to be missing. It is suggested that pre-service teachers should be given more guidance and opportunities in science courses in carrying out scientific discourse that reflects reform-based scientific inquiry.  相似文献   

9.
Aligned with recent changes to syllabuses in Australia is an assessment regime requiring teachers to identify what their students ‘know’ and ‘can do’ in terms of the quality of understanding demonstrated. This paper describes the experiences of 25 secondary science and mathematics teachers in rural schools in New South Wales as they explore the changing nature of assessment and its implications on their classroom practice. To help reconceptualise these changes, teachers were introduced to a cognitive structural model as a theoretical framework. Throughout the 2-year study, teachers attended a series of professional development sessions and received ongoing consultative support. Each session was taped and transcribed while interviews were conducted with each teacher at the end of both years. Analysis of these data using a grounded theory approach identified seven major components of teacher practice impacted by the study. The core component was questioning while the six contributing components were teachers’ pedagogical practices, attention to cognition, teaching strategies, assessment linked to pedagogy, classroom advantages for students, and classroom advantages for teachers. These findings represent a major shift in teachers’ perceptions of assessment from a focus on the accumulation of students’ marks to one of diagnosis as a means of directing teaching to enhance students’ scientific and mathematical understandings.  相似文献   

10.
John Settlage’s article—Counterstories from White Mainstream Preservice Teachers: Resisting the Master Narrative of Deficit by Default—outlines his endeavour to enable pre-service teachers to develop culturally responsive science teaching identities for resisting the master narrative of deficit thinking when confronted by the culturally different ‘other.’ Case study results are presented of the role of counterstories in enabling five pre-service teachers to overcome deficit thinking. In this forum, Philip Moore, a cultural anthropologist and university professor, deepens our understanding of the power and significance of counterstories as an educational tool for enabling students to deconstruct oppressive master narratives. Jill Slay, dean of a science faculty, examines her own master narrative about the compatibility of culturally similar academics and graduate students, and finds it lacking. But first, I introduce this scholarship with background notes on the critical paradigm and its adversary, the grand narrative of science education, following which I give an appreciative understanding of John’s pedagogical use of counterstories as a transformative strategy for multi-worldview science teacher education.  相似文献   

11.
New science teachers should be equipped with the ability to integrate and design the curriculum and technology for innovative teaching. How to integrate technology into pre-service science teachers’ pedagogical content knowledge is the important issue. This study examined the impact on a transformative model of integrating technology and peer coaching for developing technological pedagogical and content knowledge (TPACK) of pre-service science teachers. A transformative model and an online system were designed to restructure science teacher education courses. Participants of this study included an instructor and 12 pre-service teachers. The main sources of data included written assignments, online data, reflective journals, videotapes and interviews. This study expanded four views, namely, the comprehensive, imitative, transformative and integrative views to explore the impact of TPACK. The model could help pre-service teachers develop technological pedagogical methods and strategies of integrating subject-matter knowledge into science lessons, and further enhanced their TPACK.  相似文献   

12.
The objective of this study is to facilitate in-service chemistry teachers’ understanding of nature of science and what ‘ideas-about-science’ can be included in the classroom. The study is based on 17 in-service teachers who had registered for a 11-week course on ‘Epistemology of Science Teaching’ as part of their Master’s degree program. The course is based on 17 readings drawing on nature of science and its critical evaluation. Course activities included written reports, classroom discussions based on participants’ presentations and written exams. Based on the results obtained this study has the following educational implications: (a) Experimental data need to be interpreted carefully due to underdetermination of theories by data; (b) Kuhn’s normal science manifests itself in the science curriculum through the scientific method and wields considerable influence; (c) Trilemma posed by Collins (Stud Sci Educ 35:169–173, 2000), viz., creation of new knowledge ⇔ Kuhn’s normal science ⇔ teaching nature of science, provided a big challenge and was thought provoking; (d) Of the different aspects of nature of science suggested by experts, these teachers endorsed the following as most important: Creativity, Historical development of scientific knowledge, Diversity of scientific thinking and Scientific method and critical testing; (e) With respect to the contradiction between the positions of Lederman et al. (J Res Sci Teach 39:497–521, 2002) and Osborne et al. (J Res Sci Teach 40:692–720, 2003), few supported the position of latter, viz., inclusion of scientific method in the classroom and a majority supported the former, viz., scientific method as a myth; and (f) Participants were critical of the present stage of research with respect to the scientific method and suggested the introduction of history, philosophy and epistemology of science to counteract its influence.  相似文献   

13.
This paper reports on the use of a constructivist-based pedagogy to enhance understanding of some features of solution chemistry. Pre-service science teacher trainees' prior knowledge about the dissolution of salts and sugar in water were elicited by the use of a simple diagnostic tool. The test revealed widespread alternative conceptions. These evaluation data were used to produce two segments of ‘conceptual change text’: concise summaries that present alternative and scientific conceptualizations for the concepts under study. The texts were administered to 21 pre-service elementary trainee teachers whose understandings of number of conceptions were subsequently re-evaluated employing a pre-test post-test approach in which their answers and reasons for their answers were solicited. The findings suggest that these pre-service elementary trainees' alternative conceptions are changed to become more in accord with the scientific view, with more participants providing correct answers along with correct reasons than before the intervention. This work suggests that the use of conceptual change text may provide a simple and cost and resource-effective way to aid conceptual understanding for the dissolution of ionic solids in water including the effect of solute surface on the dissolution process.  相似文献   

14.
This position paper proposes the enhancement of teacher and student learning in science classrooms by tapping the enormous potential of information communication and technologies (ICTs) as cognitive tools for engaging students in scientific inquiry. This paper serves to challenge teacher-held assumptions about students learning science ‘from technology’ with a framework and examples of students learning science ‘with technology’. Whereas a high percentage of students are finding their way in using ICTs outside of school, for the most part they currently are not doing so inside of school in ways that they find meaningful and relevant to their lives. Instead, the pedagogical approaches that are most often experienced are out-of-step with how students use ICTs outside of schools and are not supportive of learning framed by constructivism. Here we describe a theoretical and pedagogical foundation for better connecting the two worlds of students’ lives: life in school and life outside of school. This position paper is in response to the changing landscape of students’ lives. The position is transformative in nature because it proposes the use of cyber-enabled resources for cultivating and leveraging students new literacy skills by learning ‘with technology’ to enhance science learning.  相似文献   

15.
If children are engaged in science lessons, their learning is likely to be better and, in the long term, careers in science and technology will remain open. Given that attitudes can develop early and be difficult to change, it is important for teachers of younger children to know how to foster engagement in science. This study identified what a cohort of 79 pre-service teachers in England considered to be engaging elementary science lessons and compared their notions with teacher behaviours known to be conducive to engagement. First, all brought beliefs about how to engage children in science lessons to their training. They tended to favour children’s hands-on activity as an effective means of fostering attentive participation in learning, although many had additional ideas. Nevertheless, the means and ends of their ‘pedagogies of engagement’ tended to be simple and narrow. Trainers need to ensure that notions of engagement are wide enough to cope with a variety of teaching situations, as when hands-on experience is not feasible, effective or appropriate. At the same time, teachers will need to recognise that one approach may not suit all learners. Without this, there is the risk that they will lack the skills to engage children in science. Nevertheless, these beliefs could offer a useful starting point for trainers who wish to widen pre-service teachers’ conceptions of engagement and increase their repertoire of teaching behaviours.  相似文献   

16.
In this paper, I present a critical review of the recent book, Science Education as a Pathway to Teaching Language Literacy, edited by Alberto J. Rodriguez. This volume is a timely collection of essays in which the authors bring to attention both the successes and challenges of integrating science instruction with literacy instruction (and vice versa). Although several themes in the book merit further attention, a central unifying issue throughout all of the chapters is the task of designing instruction which (1) gives students access to the dominant Discourses in science and literacy, (2) builds on students’ lived experiences, and (3) connects new material to socially and culturally relevant contexts in both science and literacy instructionall within the high stakes testing realities of teachers and students in public schools. In this review, I illustrate how the authors of these essays effectively address this formidable challenge through research that ‘ascends to the concrete’. I also discuss where we could build on the work of the authors to integrate literacy and science instruction with the purpose of ‘humanizing and democratizing’ science education in K-12 classrooms.  相似文献   

17.
One of the most important topics on the international agenda in educational research is to gain an understanding of the processes of educational change in teachers and of the factors that favour or hinder it. Such understanding is, for instance, an essential element in planning and putting into practice initial and ongoing teacher education programs. This article reviews the research on science teachers’ educational change. To organize the information, an analogy is made with the process of scientific change, analyzing and evaluating the contributions of the different models taken from the philosophy of science – positivism, Popper’s principle of falsifiability, Lakatos’ scientific research programs, Laudan’s research traditions, Toulmin’s evolutionism, and Kuhn’s relativism. We conclude the article with the implications for science teacher education.  相似文献   

18.
In this paper I reflect on perspectives presented by John Settlage as he examines the truth of the proposition that ‘many teacher educators harbour deficit perspectives about their pre-service teachers, presuming that their lack of exposure to economically, ethnically and linguistically diverse settings renders them deficient as future educators.’ In the study presented in his paper, he ‘uncovered shifting identities that indicate that mainstream future teachers do not fit the ‘‘damaged goods’’ label that ardent multiculturalists might be tempted to impose.’ One of his conclusions was that ‘the practices of essentializing education majors because of their perceived deficiencies born of privilege are inaccurate and unproductive.’ My reflections focus on tertiary teacher-researchers in mathematics, information technology, environmental sciences and engineering, their students and racism, and broaden Settlage’s context to teaching and research relationships in this setting.  相似文献   

19.
In this paper we report on teachers’ and students’ participation in authentic science research in out of school time science clubs at elementary schools. In the program four to five teachers worked alongside practicing scientists as part of their research groups. Each teacher facilitated a club with 10–15 students who, by extension, were members of the scientists’ research groups. Over the 3 years of the project nearly 30 teachers and over 500 children participated in the clubs. In this paper we present a case study of teachers and children who worked with an analytic chemist at a major university whose field of research is environmental arsenic. We illustrate how the professor mentored the teachers and how they in turn mentored the children. We show how the elementary school teachers who had very little formal science education gained the expertise needed to mentor the children. We found that in less than one academic year the teachers were able to gain the knowledge and skills to facilitate the children’s legitimate participation in authentic scientific research; and that the children gained the methodological and intellectual proficiency needed to contribute useful data and findings to the scientist’s research program.  相似文献   

20.
This article will describe the dispositions of science teachers in the context of a curriculum reform. Using Bourdieu’s notions of ‘habitus’ and ‘the field,’ the analysis of the data highlights the necessity for curriculum reformers to view the field of the science department as a contested space. From this understanding flow several subsidiary issues: the need to promote disequilibrium and critical conversations around the meanings and practices of science education within the department, and the need to value and capitalise on the symbolic capital of teacher credibility. The article concludes by briefly critiquing recent curriculum reforms in Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号