首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article focuses on the impact of a professional play that we developed in order to introduce elementary learners of an urban school to the research of a scientist working at a local university. The play was written in a way that might increase student understandings of the nature of science, scientific inquiry, the identity of scientists, and the work that scientists do. We collected pre-and post-play questionnaire responses and drawings of scientists from third and fourth grade students who attended the play. We also interviewed five of the ten teachers whose students attended the play. Findings indicated that most of these teachers felt strongly that their students had learned about scientific inquiry, the identity of scientists, and the work that scientists do as a result of attending the play. However, less than half of the student questionnaires and drawings of scientists indicated such growth as a result of the play. That being said, numerous students were able to tell us what they learned from the play and many questionnaire responses and drawings indicated such learning. Implications for partnerships between schools and university faculty from various disciplines in order to develop potentially impactful plays that portray authentic scientific research are discussed.  相似文献   

2.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

3.
This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry‐oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi‐participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.  相似文献   

4.
A major reason for the lack of scientific and technological literacy in this country is the lack of emphasis on high-quality science education at the elementary school level. The National Science Board Commission on Precollege Education in Mathematics, Science, and Technology states in its report (1983) that formal study of science must be reinforced by a wide range of activities outside the school. Learning in the home appears to be an excellent way to enhance elementary school science programs. Students who study with their parents or whose parents are involved in school activities achieve more in school. This study describes and presents evaluation data for a program that encourages elementary school students and their parents to study science topics in a hands-on, inquiry fashion in their own homes. The analyses of the data indicate that the program is viewed very positively by both the students and their parents, that there are gender and grade-level differences in the students, and that the program seems to be more effective for girls, a group at risk for continuing in science.  相似文献   

5.
The purpose of this study was to explicate the impact of an 8‐week science apprenticeship program on a group of high‐ability secondary students' understandings of the nature of science and scientific inquiry. Ten volunteers (Grades 10–11) completed a modified version of the Views of Nature of Science, Form B both before and after their apprenticeship to assess their conceptions of key aspects of the nature of science and scientific inquiry. Semistructured exit interviews provided an opportunity for students to describe the nature of their apprenticeship experiences and elaborate on their written questionnaire responses. Semistructured exit interviews were also conducted with the scientists who served as mentors for each of the science apprentices. For the most part, students held conceptions about the nature of science and scientific inquiry that were inconsistent with those described in current reforms. Participating science mentors held strong convictions that their apprentices had learned much about the scientific enterprise in the course of doing the science in their apprenticeship. Although most students did appear to gain knowledge about the processes of scientific inquiry, their conceptions about key aspects of the nature of science remained virtually unchanged. Epistemic demand and reflection appeared to be crucial components in the single case where a participant experienced substantial gains in her understandings of the nature of science and inquiry. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 487–509, 2003  相似文献   

6.
Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher’s (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia’s beliefs and instructional practices, several kinds of data were collected in a period of 9 months: a self-portrait and an accompanying narrative, a personal philosophy assignment, three interviews, three journal entries, ten lesson plans, and ten videotaped classroom observations. The analysis of these data showed that Sofia’s beliefs and instructional practices were reform-minded. She articulated contemporary beliefs about scientific inquiry and how children learn science and was able to translate these beliefs into practice. Central to Sofia’s beliefs about science teaching were scientific inquiry and engaging students in investigations with authentic data, with a prevalent emphasis on the role of evidence in the construction of scientific claims. These findings are important to research aiming at supporting teachers, especially beginning ones, to embrace reform recommendations.  相似文献   

7.
This study examined the influence of a professional development program based around commercially available inquiry science curricula on the teaching practices of 27 beginning elementary school teachers and their teacher mentors over a 2 year period. A quantitative rubric used to score inquiry elements and use of data in videotaped lessons indicated that education students assigned to inquiry-based classrooms during their methods course or student teaching year outperformed students without this experience. There was also a significant positive effect of multi-year access to the kit-based program on mentor teaching practice. Recent inclusion of a “writing in science” program in both preservice and inservice training has been used to address the lesson element that received lowest scores—evaluation of data and its use in scientific explanation.  相似文献   

8.

Authentic activities are important in promoting inquiry because they provide natural problem-solving contexts with high degrees of complexity. This study designed and studied effective inquiry tasks through transforming content, scientific thinking, and resources featured in scientists' authentic practices. This study investigated how 59 inner-city 6th grade students performed in real-time forecasting situations involving fronts and pressure systems. Forecasts were evaluated in terms of prediction agreement, meteorological entity consideration, explanation type, and scientific knowledge use because these four categories reflected inquiry features emphasized in the forecasting task. Results show that real-world situations that mapped closely onto students' content understandings, rather than those with naturally occurring complex patterns, helped students perform inquiry. Key ideas discussed in this paper include the importance of using authentic situations to develop rich understandings about scientific knowledge and the design of tasks that prepare students to participate in social practices valued by the science community.  相似文献   

9.
In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.  相似文献   

10.
In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.  相似文献   

11.
时维锐 《天津教育》2021,(2):183-184
国家在小学阶段设置科学课的目的,就是从小培养学生的科学意识、科学素养,让学生学会观察、动手操作、学会思考、学会观察、学会合作、亲历实验、收集数据、分析数据得出结论。目前科学课教学却出现教师不知如何教,学生不会学的现象。如何把科学课上出"科学味"、更具实效性,是目前学校亟待解决的问题。笔者就此进行深入研究,采取了很多"科学的方法"进行"科学"教学。  相似文献   

12.
A survey instrument was developed and administered to 1,222 K-12 mathematics and science teachers to measure their beliefs about and use of inquiry in the classroom. Four variables (grade level taught, content area taught, level of support received, and self-efficacy for teaching inquiry) were significantly correlated to two dependent variables, percentage of time that students are engaged in inquiry during a typical lesson and the perceived ideal percentage of instructional time that should be devoted to inquiry. Specifically, elementary school teachers reported using inquiry-based practices more than either middle-school or high-school teachers; similarly, elementary-school teachers believed such practices should be used more often. All groups, however, reported believing in an ideal percentage of time devoted to inquiry instruction that was significantly greater than their reported percentage of time actually spent on inquiry instruction. A disordinal effect was found between grade level taught and content area taught; at the elementary level, science teachers reported both an ideal and actual percentage of time on inquiry higher than those reported by the math teachers, while at the high school level math teachers reported both an ideal and actual percentage of time on inquiry higher than those reported by the science teachers. No correlations were found between typical and ideal percentage of time devoted to inquiry and subject matter content knowledge training, gender, years of teaching experience, or maximum degree earned.  相似文献   

13.
新一轮基础教育课程改革特别强调学生科学核心素养的获得。《小学科学课程标准》也明确提出了培养学生以科学探究精神为核心的核心素养。作为一名小学科学教师,在教学的过程中要持续关注基础科学知识的讲解和传授,也需要通过基础理论引导帮助学生形成一定的科学探究意识,引导他们在实验操作的过程中能够认真思考,提高实践能力。本文就以构建小学科学高效课堂,培养学生科学核心素养为基础性内容,进一步探讨培养策略问题。  相似文献   

14.
This study examined elementary teachers’ instructional strategies for promoting scientific understanding and inquiry and supporting English language development with diverse student groups including English language learners. The study was part of a 5-year research and development project consisting of reform-based science curriculum units and teacher workshops aimed at providing effective science instruction to promote students’ science and literacy achievement in urban elementary schools. Data consisted of 213 post-observation interviews with third, fourth, and fifth grade teachers. The teachers reported using instructional strategies to promote scientific understanding, but generally did not employ more sophisticated inquiry-based strategies. They also reported using instructional strategies to support English language development. There were significant differences among grade levels and by years of teacher participation.  相似文献   

15.
The term scientific literacy is defined differently in different contexts. The term literacy simply refers to the ability for one to read and write, but recent studies in language literacy have extended this definition. New literacy research seeks a redefinition in terms of how skills are used rather than how they are learned. Contemporary perspectives on literacy as a transfer of learned skills into daily life practises capture the understanding of what it means to be scientifically literate. Scientific literacy requires students to be able to use their scientific knowledge independently in the everyday world. Some models for teaching towards scientific literacy have been suggested including inquiry‐based learning embedded in constructivist epistemologies. The inquiry‐based model is posited to be effective at bringing about in‐depth understanding of scientific concepts through engaging students’ preconceptions. In order to establish whether directly engaging students’ preconceptions can lead to in‐depth understanding of the science of HIV/AIDS, a case study was designed to elucidate students’ prior knowledge. From questionnaires and classroom observations, Ugandan Grade 11 students’ persistent preconceptions were explored in follow‐up focus group discussions. The inquiry process was used to engage students with their own perceptions of HIV/AIDS during the focus group discussions. Findings suggest that students need to dialogue with each other as they reflect on their beliefs about HIV/AIDS. Dialogue enabled students to challenge their beliefs while making connections between ‘school’ and ‘home’ knowledge.  相似文献   

16.
17.
As part of a larger project aimed at promoting science and literacy for culturally and linguistically diverse elementary students, this study has two objectives: (a) to describe teachers' initial beliefs and practices about inquiry‐based science and (b) to examine the impact of the professional development intervention (primarily through instructional units and teacher workshops) on teachers' beliefs and practices related to inquiry‐based science. The research involved 53 third‐ and fourth‐grade teachers at six elementary schools in a large urban school district. At the end of the school year, teachers reported enhanced knowledge of science content and stronger beliefs about the importance of science instruction with diverse student groups, although their actual practices did not change significantly. Based on the results of this first year of implementation as part of a 3‐year longitudinal design, implications for professional development and further research are discussed. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 1021–1043, 2004  相似文献   

18.
Learning science through the process of inquiry is advocated in curriculum documents across many jurisdictions. However, a number of studies suggest that teachers struggle to help students engage in inquiry practices. This is not surprising as many teachers of science have not engaged in scientific inquiry and possibly hold naïve ideas about what constitutes scientific inquiry. This study investigates teachers' self-reported approaches to teaching science through inquiry. Phenomenographic interviews undertaken with 20 elementary teachers revealed teachers identified six approaches to teaching for inquiry, clustered within three categories. These approaches were categorized as Free and Illustrated Inquiries as part of an Experience-centered category, Solution and Method Inquiries as part of a Problem-centered category, and Topic and Chaperoned Inquiries as part of a Question-centered category. This study contributes to our theoretical understanding of how teachers approach Inquiry Teaching and suggests fertile areas of future research into this valued and influential phenomenon broadly known as ‘Inquiry Teaching'.  相似文献   

19.
Genetics is the cornerstone of modern biology and understanding genetics is a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions or to participate in public debates over emerging technologies in molecular genetics. Currently, much of genetics instruction occurs at the high school level. However, recent policy reports suggest that we may need to begin introducing aspects of core concepts in earlier grades and to successively develop students’ understandings of these concepts in subsequent grades. Given the paucity of research about genetics learning at the middle school level, we know very little about what students in earlier grades are capable of reasoning about in this domain. In this paper, we discuss a research study aimed at fostering deeper understandings of molecular genetics at the middle school level. As part of the research we designed a two-week model-based inquiry unit implemented in two 7th grade classrooms (N = 135). We describe our instructional design and report results based on analysis of pre/post assessments and written artifacts of the unit. Our findings suggest that middle school students can develop: (a) a view of genes as productive instructions for proteins, (b) an understanding of the role of proteins in mediating genetic effects, and (c) can use this knowledge to reason about a novel genetic phenomena. However, there were significant differences in the learning gains in both classrooms and we provide speculative explanations of what may have caused these differences.  相似文献   

20.
Recently, researchers have demonstrated the benefits of technology-enhanced science inquiry activities. To improve students’ self-regulation and assist them in controlling their own learning pace through inquiry activities, in this study, a self-regulated science inquiry approach was developed to assist them in organizing information from their real-world exploration. A quasi-experimental design was conducted in an elementary school natural science course to evaluate the students’ performance using the proposed learning approach. One class assigned as the treatment group learned with the self-regulated science inquiry approach, while the other class assigned as the control group learned with the conventional science inquiry approach. The students’ learning achievement, tendency of information help seeking, tendency of self-regulation, and self-efficacy were evaluated. The results of the study revealed that the self-regulated science inquiry approach improved the students’ learning achievement, especially for those students with higher self-regulation. In addition, the students who conducted inquiry with the self-regulated learning strategy increased their tendency of information help seeking, self-efficacy, and several aspects of self-regulation, including time management, help seeking, and self-evaluation. Accordingly, this study demonstrated the effectiveness of the self-regulated learning strategy, an approach with high learner control, in terms of improving students’ learning achievement and their self-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号