首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we analyzed the quality of students' written scientific explanations found in notebooks and explored the link between the quality of the explanations and students' learning. We propose an approach to systematically analyzing and scoring the quality of students' explanations based on three components: claim, evidence to support it, and a reasoning that justifies the link between the claim and the evidence. We collected students' science notebooks from eight science inquiry‐based middle‐school classrooms in five states. All classrooms implemented the same scientific‐inquiry based curriculum. The study focuses on one of the implemented investigations and the students' explanations that resulted from it. Nine students' notebooks were selected within each classroom. Therefore, a total of 72 students' notebooks were analyzed and scored using the proposed approach. Quality of students' explanations was linked with students' performance in different types of assessments administered as the end‐of‐unit test: multiple‐choice test, predict‐observe‐explain, performance assessment, and a short open‐ended question. Results indicated that: (a) Students' written explanations can be reliably scored with the proposed approach. (b) Constructing explanations were not widely implemented in the classrooms studied despite its significance in the context of inquiry‐based science instruction. (c) Overall, a low percentage of students (18%) provided explanations with the three expected components. The majority of the sample (40%) provided only claims without any supporting data or reasoning. And (d) the magnitude of the correlations between students' quality of explanations and their performance, were all positive but varied in magnitude according to the type of assessment. We concluded that engaging students in the construction of high quality explanations may be related to higher levels of student performance. The opportunities to construct explanations in science‐inquiry based classrooms, however, seem to be limited. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 583–608, 2010  相似文献   

2.
Past studies have explored the role of student science notebooks in supporting students' developing science understandings. Yet scant research has investigated science notebook use with students who are learning science in a language they are working to master. To explore how student science notebook use is co-constructed in interaction among students and teachers, this study examined plurilingual students' interactions with open-ended science notebooks during an inquiry science unit on condensation and evaporation. Grounded in theoretical views of the notebook as a semiotic social space, multimodal interaction analysis facilitated examination of the ways students drew upon the space afforded by the notebook as they constructed explanations of their understandings. Cross-group comparison of three focal groups led to multiple assertions regarding the use of science notebooks with plurilingual students. First, the notebook supported student-determined paths of resemiotization as students employed multiple communicative resources to express science understandings. Second, notebooks provided spaces for students to draw upon diverse language resources and as a bridge in time across multiple inquiry sessions. Third, representations in notebooks were leveraged by both students and teachers to access and deepen conceptual conversations. Lastly, students' interactions over time revealed multiple epistemological orientations in students' use of the notebook space. These findings point to the benefits of open-ended science notebooks use with plurilingual students, and a consideration of the ways they are used in interaction in science instruction.  相似文献   

3.
This research investigated the effect of reflective discussions following inquiry‐based laboratory activities on students' views of the tentative, empirical, subjective, and social aspects of nature of science (NOS). Thirty‐eight grade six students from a Lebanese school participated in the study. The study used a pretest–posttest control‐group design and focused on collecting mainly qualitative data. During each laboratory session, students worked in groups of two. Later, experimental group students answered open‐ended questions about NOS then engaged in reflective discussions about NOS. Control group students answered open‐ended questions about the content of the laboratory activities then participated in discussions of results of these activities. Data sources included an open‐ended questionnaire used as pre‐ and posttest, answers to the open‐ended questions that experimental group students answered individually during every session, transcribed videotapes of the reflective discussions of the experimental group, and semi‐structured interviews. Results indicated that explicit and reflective discussions following inquiry‐based laboratory activities enhanced students' views of the target NOS aspects more than implicit inquiry‐based instruction. Moreover, implicit inquiry‐based instruction did not substantially enhance the students' target NOS views. This study also identified five major challenges that students faced in their attempts to change their NOS views. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1229–1252, 2010  相似文献   

4.
This study, conducted in an inner-city middle school, followed the conceptual changes shown in 25 students' writing over a 12-week science unit. Conceptual changes for 6 target students are reported. Student understanding was assessed regarding the nature of matter and physical change by paper-and-pencil pretest and posttest. The 6 target students were interviewed about the goal concepts before and after instruction. Students' writing during lesson activities provided qualitative data about their understandings of the goal concepts across the science unit. The researcher constructed concept maps from students' written statements and compared the maps across time to assess changes in the schema of core concepts, complexity, and organization as a result of instruction. Target students' changes were studied in detail to determine patterns of conceptual change. After patterns were located in target students' maps, the remaining 19 students' maps were analyzed for similar patterns. The ideas that students identified in their writing showed changes in central concepts, complexity, and organization as the lessons progressed. When instructional events were analyzed in relation to students' demonstrated ideas, understanding of the goal conceptions appeared in students' writing more often when students had opportunities to explain their new ideas orally and in writing.  相似文献   

5.
Computational thinking (CT) is a way of making sense of the natural world and problem solving with computer science concepts and skills. Although CT and science integrations have been called for in the literature, empirical investigations of such integrations are lacking. Prior work in natural selection education indicates students struggle to explain natural selection in different contexts and natural selection misconceptions are common. In this mixed methods study, secondary honors biology students learn natural selection through CT by engaging in the design of unplugged algorithmic explanations. Students learned CT principles and practices and applied them to learn and explain the natural selection process. Algorithmic explanations were used to scaffold transfer of natural selection knowledge across contexts through investigation of three organisms and the creation of generalized natural selection algorithms. Students' pre- and post-unit algorithmic explanations of natural selection were analyzed to answer the following research questions: (a) How do students' conceptions of natural selection change over the course of a CT focused unit? (b) What is the relationship between CT and natural selection in students' algorithmic explanations? (c) What are students' perspectives of learning natural selection with CT? Results indicate students' conceptions of natural selection increased and natural selection misconceptions decreased over the course of the unit. Within their post-unit algorithmic explanations, students used specific CT principles in conjunction with natural selection concepts to explain natural selection, which helped them to learn the details of the natural selection process and correct their natural selection misconceptions. Students indicated the use of CT in unplugged algorithmic explanations in different contexts helped them learn natural selection. This study shows unplugged CT can be used to teach students science content, and it provides an example for further CT and science integrations. Implications for the field are discussed.  相似文献   

6.
7.
Researchers and practitioners in the United States increasingly promote phenomena-based instruction in science that supports the development of a coherent storyline throughout the unit. Questions about who is constructing the science storyline and how still remain. Employing a qualitative ethnographic case study approach, we explore how three Latinx female students authentically contribute in their high school chemistry class and change the science storyline originally developed by the teacher. Data include over 950 min of video recordings, student artifacts, and interviews collected from a unit about reaction rate, which was contextualized by students' experiences with a local wildfire. The analysis points to three instructional moves that appear to play an important role in shifting the collective storyline: connecting to Latinx students' personal concerns, moving across multiple figured worlds, and recognizing students' epistemological contributions. Implications for supporting minoritized students are discussed.  相似文献   

8.
Although science has received much attention as a political and educational initiative, students with learning disabilities (LD) perform significantly lower than their nondisabled peers. This meta‐analysis evaluates the effectiveness of instructional strategies in science for students with LD. Twelve studies were examined, summarized, and grouped according to the type of strategy implemented. Effect sizes (ES) were calculated for each study. Across all studies, a mean ES of .78 was obtained, indicating a moderate positive effect on students with LD science achievement. Findings also align with past reviews of inquiry‐based instruction for students with special needs, indicating that students with LD need structure within an inquiry science approach in order to be successful. Additionally, results suggest that mnemonic instruction is highly effective at increasing learning disabled students' acquisition and retention of science facts.  相似文献   

9.
Current standards emphasize student engagement with inquiry practices. However, implementing inquiry instruction is a formidable challenge for teachers as they often lack models for using and adapting inquiry-based instructional materials. Teacher education programs can provide scaffolded contexts for developing teachers’ ability to critique, adapt, and design inquiry-based materials. We describe a qualitative study of 17 preservice teachers enrolled in two consecutive science methods courses. The study characterizes the development of preservice teachers’ ability to critique and revise instructional materials. Our findings suggest that teachers improved in their ability to critique lesson plans and to suggest revisions that would make them more inquiry oriented. In particular, the teachers’ critiques and revisions increased in sophistication after engaging in instructional design activities during the second methods course.  相似文献   

10.
This investigation examined 10th‐grade biology students' decisions to enroll in elective science courses, and explored certain attitudinal perceptions of students that may be related to such decisions. The student science perceptions were focused on student and classroom attitudes in the context of differing learning cycle classrooms (high paradigmatic/high inquiry, and low paradigmatic/low inquiry). The study also examined possible differences in enrollment decisions/intentions and attitudinal perceptions among males and females in these course contexts. The specific purposes were to: (a) explore possible differences in students' decisions, and in male and female students' decisions to enroll in elective science courses in high versus low paradigmatic learning cycle classrooms; (b) describe patterns and examine possible differences in male and female students' attitudinal perceptions of science in the two course contexts; (c) investigate possible differences in students' science perceptions according to their decisions to enroll in elective science courses, participation in high versus low paradigmatic learning cycle classrooms, and the interaction between these two variables; and (d) examine students' explanations of their decisions to enroll or not enroll in elective science courses. Questionnaire and observation data were collected from 119 students in the classrooms of six learning cycle biology teachers. Results indicated that in classrooms where teachers most closely adhered to the ideal learning cycle, students had more positive attitudes than those in classrooms where teachers deviated from the ideal model. Significantly more females in high paradigmatic learning cycle classrooms planned to continue taking science course work compared with females in low paradigmatic learning cycle classrooms. Male students in low paradigmatic learning cycle classrooms had more negative perceptions of science compared with males in high paradigmatic classrooms, and in some cases, with all female students. It appears that using the model as it was originally designed may lead to more positive attitudes and persistence in science among students. Implications include the need for science educators to help teachers gain more thorough understanding of the learning cycle and its theoretical underpinnings so they may better implement this procedure in classroom teaching. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 1029–1062, 2001  相似文献   

11.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

12.
Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.  相似文献   

13.
Abstract

Examining how teachers structure the activities in a unit and how they facilitate classroom discussion is important to understand how innovative technology-rich curricula work in the context of classroom instruction. This study compared 2 enactments of an inquiry curriculum, then examined students' learning outcomes in classes taught by 2 teachers. The quantitative data show that there were significant differences in the learning outcomes of students in classes of the 2 teachers. This study then examined classroom enactments by the 2 teachers to understand the differences in the learning outcomes. This research specifically focused on how teacher-led discussions (a) helped connect the activities within a curriculum unit and (b) enabled deeper conceptual understanding by helping students make connections between science concepts and principles. This study examined the role that teacher facilitation played in helping students focus on the relations between the various activities in the unit and the concepts that they were learning. The results point to important differences in the 2 enactments, helping to understand better what strategies might enable a deeper conceptual understanding of the science content.  相似文献   

14.
Interpretation and construction of graphs are central to the study of physics and to performance in physics. In this paper, I explore the interpretation and construction processes called upon in questions with a graphical component, in Western Australian Physics Tertiary Entrance Examinations. In addition, I list errors made by students as reported by examiners and offer explanations for the errors. Outcomes of the inquiry are the identification of sources of challenge in the graphing questions, including requirements to calculate gradient and analyse experimental data. I also identify question structures that could be barriers to students' understanding the examination questions. The micro-analysis of graphing in one jurisdiction can inform assessment of high-school physics in general.  相似文献   

15.
Situated in the context of an in-service professional development (PD) program focused on Interdisciplinary Science Inquiry, this quantitative study tests the validity of and further explores the theoretical model adapted from Desimone's (2009), Educational Researcher, 38, 181–199 conceptual framework on effectiveness of PD. The participants include 204 teachers and 5,581 students within 12 local public schools from 2012 to 2016. The multilevel models indicate that PD participation, school-, and teacher-level factors influence teacher pedagogical content knowledge and inquiry instruction in different ways. Furthermore, the inquiry instruction significantly relates student understanding of interdisciplinary science concepts (ISCs) through a few mediators. Therefore, this study reinforces calls to provide teachers with high quality PD and contributes to current knowledge base of the mechanisms of how inquiry instruction influences students' understanding of ISCs.  相似文献   

16.
This study aimed to determine how 33 urban 5th grade students' science conceptions changed during a place‐based inquiry unit on watersheds. Research on watershed and place‐based education was used as a framework to guide the teaching of the unit as well as the research study. A teacher‐researcher designed the curriculum, taught the unit and conducted the research using qualitative data sources such as concept maps, science notebooks and interviews. Most students came to understand that their watershed was part of an urban environment where water drains from the surrounding land into a body of water. Thus, they began to understand how urban land use affects water quality. This study provides evidence for the use of place‐based learning in developing students' knowledge of the National Science Education Standards (NRC, 1996) and watersheds. Implications of this study include the use of place‐based learning in urban settings and the experiences needed for students to conceptualize watersheds. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 501–517, 2010  相似文献   

17.
Theories of social cognition and verbal communication were used to analyze the science teaching of an experienced fourth-grade teacher. Her teaching skills in language arts and reading were assets in negotiating the rapid flow of relatively unstructured information typical of inquiry in elementary classrooms, to help students generate relevant information about hands-on experience. The teacher was a collaborator in this case study of her thinking and instructional planning, and her students' learning in a unit of instruction about space. Implications for elementary science instruction include recognizing the importance of embedded speech in conceptually broad discussions with students. Efforts to reform elementary science instruction should attend to these instructional skills more common to language arts instruction.  相似文献   

18.
To help explain the differences in students' performance on internationally administered science assessments, cross-national, video-based observational studies have been advocated, but none have yet been conducted at the elementary level for science. The USA and Germany are two countries with large formal education systems whose students underperform those from peers on internationally administered standardized science assessments. However, evidence from the 2011 Trends in International Mathematics and Science Exam assessment suggests fourth-grade students (9–10 year-olds) in the USA perform higher than those in Germany, despite more instructional time devoted to elementary science in Germany. The purpose of this study is to comparatively analyze fourth-grade classroom science in both countries to learn more about how teachers and students engage in scientific inquiry, particularly explanation-construction. Videorecordings of US and German science instruction (n 1?=?42, n 2?=?42) were sampled from existing datasets and analyzed both qualitatively and quantitatively. Despite German science lessons being, on average, twice as long as those in the USA, study findings highlight many similarities between elementary science in terms of scientific practices and features of scientific inquiry. However, they also illustrate crucial differences around the scientific practice of explanation-construction. While students in German classrooms were afforded more substantial opportunities to formulate evidence-based explanations, US classrooms were more strongly characterized by opportunities for students to actively compare and evaluate evidence-based explanations. These factors may begin to help account for observed differences in student achievement and merit further study grounded in international collaboration.  相似文献   

19.
As other countries vigorously promote rapid advancement in science, optimizing the participation of all students in the United States in science is imperative. This study focused on African American students and examined their science achievement in relation to Black Cultural Ethos (BCE), a construct rooted in psychology. Via qualitative and quantitative data obtained from a non‐random control group design, the study addressed three questions: (1) With respect to BCE, what characterizes the natural instructional contexts of two middle school science teachers? (2) What characterizes the achievement of African American students in contexts that incorporate BCE and contexts that do not? (3) What achievement patterns, if any, exist in BCE and non‐BCE instructional contexts? With regard to the natural contexts, the teachers did not incorporate BCE even when the opportunities were available to do so. Within these non‐BCE contexts, the group's mean scores on the study‐specific test that aligned with instruction decreased from pretest to posttest with approximately one‐third of the students' scores improving. When a context was altered with a moderate effect size of 0.47 to include BCE, the group's mean scores on the aforementioned test increased from pretest to posttest with two‐thirds of the students' scores improving. An illustration of the interplay between BCE and context and a consideration of the interplay as a mediating factor in research involving African American students encapsulate the significance and implications of the study's findings. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 665–683, 2008  相似文献   

20.
Previous research has demonstrated the potential of examining log-file data from computer-based assessments to understand student interactions with complex inquiry tasks. Rather than solely providing information about what has been achieved or the accuracy of student responses (product data), students' log files offer additional insights into how the responses were produced (process data). In this study, we examined students' log files to detect patterns of students' interactions with computer-based assessment and to determine whether unique characteristics of these interactions emerge as distinct profiles of inquiry performance. Knowledge about the characteristics of these profiles can shed light on why some students are more successful at solving simulated inquiry tasks than others and how to support student understanding of scientific inquiry through computer-based environments. We analyzed the Norwegian PISA 2015 log-file data, science performance as well as background questionnaire (N = 1,222 students) by focusing on two inquiry tasks, which required scientific reasoning skills: coordinating the effects of multiple variables and coordinating theory and evidence. Using a mixture modeling approach, we identified three distinct profiles of students' inquiry performance: strategic, emergent, and disengaged. These profiles revealed different characteristics of students' exploration behavior, inquiry strategy, time-on-task, and item accuracy. Further analyses showed that students' assignment to these profiles varied according to their demographic characteristics (gender, socio-economic status, and language at home), attitudes (enjoyment in science, self-efficacy, and test anxiety), and science achievement. Although students' profiles on the two inquiry tasks were significantly related, we also found some variations in the proportion of students' transitions between profiles. Our study contributes to understanding how students interact with complex simulated inquiry tasks and showcases how log-file data from PISA 2015 can aid this understanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号