首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
BackgroundAlthough nanoparticles (NPs) have many advantages, it has been proved that they may be absorbed by and have toxic effects on the human body. Recent research has tried to evaluate and compare the nanotoxicity of gold nanoparticles (AuNPs) produced by two types of microorganisms in vitro by two different methods. AuNPs were produced by Bacillus cereus and Fusarium oxysporum, and their production was confirmed by visible spectral, transmission electron microscope, and X-ray diffraction (XRD) analyses. The human fibroblast cell line CIRC-HLF was treated with AuNPs, and the induced nanotoxicity was measured using direct microscopic and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays.ResultsThe results showed that the produced AuNPs had a maximum absorbance peak around 510–530 nanometer (nm), with spherical, hexagonal, and octagonal shapes and average sizes around 20–50 nm. The XRD results confirmed the presence of GNPs in the microbial culture supernatants. An MTT assay showed that GNPs had dose-dependent toxic effects, and microscopic analysis showed that GNPs induced cell abnormalities in doses lower than the determined half-maximal inhibitory concentrations (IC50s).ConclusionsIn conclusion, the biologically produced AuNPs had toxic effects in the cell culture, and direct techniques such as microscopic evaluation instead of indirect methods such as MTT assay were more useful for assessing the nanotoxicity of the biologically produced AuNPs. Thus, the use of only MTT assay for nanotoxicity evaluation of AuNPs is not desirable.  相似文献   

2.
Hu Y  Wang Q  Wang J  Zhu J  Wang H  Yang Y 《Biomicrofluidics》2012,6(2):26502-265029
Alginate microgels with varied shapes, such as mushroom-like, hemi-spherical, red blood cell-like, and others, were generated by combining microfluidic and external ionic crosslinking methods. This novel method allows a continuous fine tuning of the microgel particles shape by simply varying the gelation conditions, e.g., viscosity of the gelation bath, collecting height, interfacial tension. The release behavior of iopamidol-loaded alginate microgel particles with varied morphologies shows significant differences. Our technique can also be extended to microgels formation from different anionic biopolymers, providing new opportunities to produce microgels with various anisotropic dimensions for the applications in drug delivery, optical devices, and in advanced materials formation.  相似文献   

3.
Carboxylate-modified gold nanoparticles (GNPs) were synthesized in a simple one-step process based on the reduction of tetrachloroauric acid by aspartic acid in water. GNPs were identified by UV–Vis spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy. Conjugation of protein molecules with functionalized nanoparticles was performed through electrostatic interaction. The GNP–protein conjugates were characterized by gel electrophoresis. The interaction between functionalized GNPs and protein molecules lead to conformational transition of protein structure after conjugation of protein with GNPs. This process was investigated by fluorescence spectroscopy and circular dichroism spectroscopy.  相似文献   

4.
A novel technique for biomolecular detection in microliter droplets floating on the surface of high density oil is presented. Each droplet was captured and manipulated dielectrophoretically and was used as a site for a microscopic bioassay based on agglutination of antibody-conjugated particles. The results were read out by the pattern of unagglomerated gold nanoparticles collected on the droplet surface. Two formats of bioassays, namely gold only agglutination and gold and latex agglutination, were investigated experimentally by varying analyte concentration, particle size and concentration, number of antigen binding sites per particle, time for incubation, and rate of particle collection on the droplet surface. The microbioassays performance was also evaluated with ricin antibodies and compared to the ricin assays in field use. It is estimated that the droplet based assays require 100× smaller sample volume and are ten times more sensitive, though they require longer times to complete. The experiments were interpreted by modeling the kinetics of particle agglutination and mass transfer processes inside the droplets. The incubation time and antigen concentration values calculated by the model correlate well with the experimental results. The results could allow for development of efficient immunoassays on a chip requiring even smaller sample volumes.  相似文献   

5.
In this work, we demonstrate the use of stereolithographic 3D printing to fabricate millifluidic devices, which are used to engineer particles with multiple compartments. As the 3D design is directly transferred to the actual prototype, this method accommodates 3D millimeter-scaled features that are difficult to achieve by either lithographic-based microfabrication or traditional macrofabrication techniques. We exploit this approach to produce millifluidic networks to deliver multiple fluidic components. By taking advantage of the laminar flow, the fluidic components can form liquid jets with distinct patterns, and each pattern has clear boundaries between the liquid phases. Afterwards, droplets with controlled size are fabricated by spraying the liquid jet in an electric field, and subsequently converted to particles after a solidification step. As a demonstration, we fabricate calcium alginate particles with structures of (1) slice-by-slice multiple lamellae, (2) concentric core-shells, and (3) petals surrounding the particle centers. Furthermore, distinct hybrid particles combining two or more of the above structures are also obtained. These compartmentalized particles impart spatially dependent functionalities and properties. To show their applicability, various ingredients, including fruit juices, drugs, and magnetic nanoparticles are encapsulated in the different compartments as proof-of-concepts for applications, including food, drug delivery, and bioassays. Our 3D printed electro-millifluidic approach represents a convenient and robust method to extend the range of structures of functional particles.  相似文献   

6.
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.  相似文献   

7.
Ordered deposition of elongated DNA molecules was achieved by the forced dewetting of a DNA solution droplet over a microstructured substrate. This technique allows trapping, uncoiling, and deposition of DNA fragments without the need of a physicochemical anchoring of the molecule and results in the combing of double stranded DNA from the edge of microwells on a polydimethylsiloxane (PDMS) substrate. The technique involves scanning a droplet of DNA solution caught between a movable blade and a PDMS substrate containing an array of microwells. The deposition and elongation appears when the receding meniscus dewets microwells, the latter acting here as a perturbation in the dewetting line forcing the water film to break locally. Thus, DNA molecules can be deposited in an ordered manner and elongated conformation based solely on a physical phenomenon, allowing uncoiled DNA molecules to be observed in all their length. However, the exact mechanism that governs the deposition of DNA strands is not well understood. This paper is an analysis of the physical phenomenon occurring in the deposition process and is based on observations made with the use of high frame/second rate video microscopy.  相似文献   

8.
Xu Y  Xie F  Qiu T  Xie L  Xing W  Cheng J 《Biomicrofluidics》2012,6(1):16504-1650411
Here, we report a novel method for the fabrication of polydimethylsiloxane microdevices with complicated 3-D structures, such as concave and crater shapes, using an easily machined polymethyl methacrylate mold combined with a one-step molding process. The procedure presented here enables rapid preparation of complex 3-D microstructures varying in shape and dimensions. To regulate embryoid body (EB) formation, we fabricated a microfluidic device with an array of concave microwells and found that EBs growing in microwells maintained their shape, viability, and a high degree of homogeneity. We believe that this novel method provides an alternative for rapid prototyping, especially in fabricating devices with curved 3-D microstructures.  相似文献   

9.
Nam J  Lim H  Kim C  Yoon Kang J  Shin S 《Biomicrofluidics》2012,6(2):24120-2412010
This study presents a method for density-based separation of monodisperse encapsulated cells using a standing surface acoustic wave (SSAW) in a microchannel. Even though monodisperse polymer beads can be generated by the state-of-the-art technology in microfluidics, the quantity of encapsulated cells cannot be controlled precisely. In the present study, mono-disperse alginate beads in a laminar flow can be separated based on their density using acoustophoresis. A mixture of beads of equal sizes but dissimilar densities was hydrodynamically focused at the entrance and then actively driven toward the sidewalls by a SSAW. The lateral displacement of a bead is proportional to the density of the bead, i.e., the number of encapsulated cells in an alginate bead. Under optimized conditions, the recovery rate of a target bead group (large-cell-quantity alginate beads) reached up to 97% at a rate of 2300 beads per minute. A cell viability test also confirmed that the encapsulated cells were hardly damaged by the acoustic force. Moreover, cell-encapsulating beads that were cultured for 1 day were separated in a similar manner. In conclusion, this study demonstrated that a SSAW can successfully separate monodisperse particles by their density. With the present technique for separating cell-encapsulating beads, the current cell engineering technology can be significantly advanced.  相似文献   

10.
A combination of a microfluidic device with a light modulation system was developed to detect the oxygen consumption rate (OCR) of a single developing zebrafish embryo via phase-based phosphorescence lifetime detection. The microfluidic device combines two components: an array of glass microwells containing Pt(II) octaethylporphyrin as an oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids above the microwells to controllably seal the microwells of interest. The total basal respiration (OCR, in pmol O2/min/embryo) of a single developing zebrafish embryo inside a sealed microwell has been successfully measured from the blastula stage (3 h post-fertilization, 3 hpf) through the hatching stage (48 hpf). The total basal respiration increased in a linear and reproducible fashion with embryonic age. Sequentially adding pharmacological inhibitors of bioenergetic pathways allows us to perform respiratory measurements of a single zebrafish embryo at key developmental stages and thus monitor changes in mitochondrial function in vivo that are coordinated with embryonic development. We have successfully measured the metabolic profiles of a single developing zebrafish embryo from 3 hpf to 48 hpf inside a microfluidic device. The total basal respiration is partitioned into the non-mitochondrial respiration, mitochondrial respiration, respiration due to adenosine triphosphate (ATP) turnover, and respiration due to proton leak. The changes in these respirations are correlated with zebrafish embryonic development stages. Our proposed platform provides the potential for studying bioenergetic metabolism in a developing organism and for a wide range of biomedical applications that relate mitochondrial physiology and disease.  相似文献   

11.
BackgroundSynthesis of selenium nanoparticles from selenite by Shewanella sp. HN-41 demonstrated that particle size depended on the reaction time and biomass of cells. The slow reaction and low biomass tended to form small particles. In this study, Shewanella sp. HN-41 was introduced into the anode of a nonexternal circuit bioelectrochemical system (nec_BES) to convert chemical energy from lactate to low electron current to the cathode, where selenite was reduced.ResultsOur experiment with two systems, one bioelectrochemical system with a cathode flushed with nitrogen and the other with a no-nitrogen-flushing cathode, showed that the former could not produce Se nanoparticles after 21 d, but the latter formed them with an average size of 37.7 nm. The SEM and TEM images demonstrated that the particle size of 10 nm occupied over 10% and most of the particles were in the range of 30–60 nm. The XRD result and SAED image demonstrated no clear peaks of crystal and proved that the Se nanoparticles are amorphous.ConclusionsThe clean Se nanoparticles were synthesized and completely separated from bacterial cells in the bioelectrochemical system. This study opened a new approach for the biological synthesis of metal nanoparticles. Finally, the Se products in the range of 30–60 nm can be tested for antimicrobial activities in medical applications.How to cite: Ho CT, Nguyen T-H, Lam T-T, et al. Biogenic synthesis of selenium nanoparticles by Shewanella sp. HN-41 using a modified bioelectrochemical system. Electron J Biotechnol 2021;54. https://doi.org/10.1016/j.ejbt.2021.07.004  相似文献   

12.
Spheroid culture is a preferable cell culture approach for some cell types, including hepatocytes, as this type of culture often allows maintenance of organ-specific functions. In this study, we describe a spheroid microarray chip (SM chip) that allows stable immobilization of hepatocyte spheroids in microwells and that can be used to evaluate drug metabolism with high efficiency. The SM chip consists of 300-μm-diameter cylindrical wells with chemically modified bottom faces that form a 100-μm-diameter cell adhesion region surrounded by a nonadhesion region. Primary hepatocytes seeded onto this chip spontaneously formed spheroids of uniform diameter on the cell adhesion region in each microwell and these could be used for cytochrome P-450 fluorescence assays. A row of microwells could also be connected to a microchannel for simultaneous detection of different cytochrome P-450 enzyme activities on a single chip. The miniaturized features of this SM chip reduce the numbers of cells and the amounts of reagents required for assays. The detection of four cytochrome P-450 enzyme activities was demonstrated following induction by 3-methylcholantlene, with a sensitivity significantly higher than that in conventional monolayer culture. This microfabricated chip could therefore serve as a novel culture platform for various cell-based assays, including those used in drug screening, basic biological studies, and tissue engineering applications.  相似文献   

13.
Gold nanoparticles (Au NPs) were directly synthesized on the surface of polyvinylsilazane (PVSZ, -[(vinyl)SiH-NH2]-) without use of extra reductive additives. The reductive Si-H functional groups on the surface of cured PVSZ acted as surface bound reducing agents to form gold metal when contacted with an aqueous Au precursor (HAuCl4) solution, leading to formation of Au NPs adhered to silicate glass surface. The Au NPs-silicate platforms were preliminarily tested to detect Rhodamine B (1 μM) by surface enhanced Raman scattering. Furthermore, gold microelectrode obtained by post-chemical plating was used as an integrated amperometric detection element in the polydimethylsilane-glass hybrid microfluidic chip.  相似文献   

14.
Liver cancer is the fifth most common cancer and is still one of the leading causes of death world wide, due to food additives, alcohol, fungal toxins, air, toxic industrial chemicals, and water pollutants. Chemopreventive drugs play a potential role in liver cancer treatment. Obviously in the production of anticancer drugs, the factors like poor solubility, bioavailability, biocompatibility, limited chemical stability, large amount of dose etc., plays a major role. Against this backdrop, the idea of designing the chemopreventive nature of bio flavanoid hesperetin (HP) drug conjugated with pegylated gold nanoparticles to increasing the solubility, improve bioavailability and enhance the targeting capabilities of the drug during diethylnitrosamine (DEN) induced liver cancer in male wistar albino rats. The dose fixation studies and the toxicity of pure HP and HP conjugated gold nanoparticles (Au-mPEG(5000)-S-HP) were analysed. After concluded the dose fixation and toxicity studies the experimental design were segregated in six groups for the anticancer analysis of DEN induced HCC for 16 weeks. After the experimental period the body weight, relative liver weight, number of nodules and size of nodules, the levels of tumor markers like CEA, AFP and the level of lipid peroxidation, lipid hydroperoxides and the activities of antioxidant enzymes were assessed. The administration of DEN to rats resulted in increased relative liver weight and serum marker enzymes aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma glutamyl transpeptidase. The levels of lipid peroxides elevated (in both serum and tissue) with subsequent decrease in the final body weight and tissue antioxidants like superoxide dismutase, catalase, reduced glutathione, glutathione peroxidise, and glutathione reductase. HP supplementation (20 mg/kg b.wt) significantly attenuated these alterations, thereby showing potent anticancer effect in liver cancer and the HP loaded gold nanoparticels (Au-mPEG(5000)-S-HP) treated animals shows the better treatment than the pure HP due to the solubility of drug, bioavailability and the target drug delivery of the biodegradable polymer. Histological observations were also carried out, which added supports to the chemopreventive action of the pure HP and HP loaded gold nanoparticles (Au-mPEG(5000)-S-HP) against DEN induction during liver cancer progression. These findings suggest that HP loaded gold nanoparticels (Au-mPEG(5000)-S-HP) shows better efficacy than the pure HP against lipid peroxidation, hepatic cell damage and protects the antioxidant system in DEN induced hepatocellular carcinogenesis.  相似文献   

15.
Zhao C  Cheng X 《Biomicrofluidics》2011,5(3):32004-3200410
Clinical analysis of acute viral infection in blood requires the separation of viral particles from blood cells, since the cytoplasmic enzyme inhibits the subsequent viral detection. To facilitate this procedure in settings without access to a centrifuge, we present a microfluidic device to continuously purify bionanoparticles from cells based on their different intrinsic movements on the microscale. In this device, a biological sample is layered on top of a physiological buffer, and both fluids are transported horizontally at the same flow rate in a straight channel under laminar flow. While the micron sized particles such as cells sediment to the bottom layer with a predictable terminal velocity, the nanoparticles move vertically by diffusion. As their vertical travel distances have a different dependence on time, the micro- and nanoparticles can preferentially reside in the bottom and top layers respectively after certain residence time, yielding purified viruses. We first performed numerical analysis to predicate the particle separation and then tested the theory using suspensions of synthetic particles and biological samples. The experimental results using dilute synthetic particles closely matched the numerical analysis of a two layer flow system containing different sized particles. Similar purification was achieved using diluted blood spiked with human immunodeficiency virus. However, viral purification in whole blood is compromised due to extensive bioparticle collisions. With the parallelization and automation potential offered by microfluidics, this device has the potential to function as an upstream sample preparation module to continuously provide cell depleted bio-nanoparticles for downstream analysis.  相似文献   

16.
We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.  相似文献   

17.
The 3D multicellular spheroids with intact cell–cell junctions have major roles in biological research by virtue of their unique advantage of mimicking the cellular physiological environments. In this work, a durable superamphiphobic silica aerogel surface (SSAS) has been fabricated for the upward culture of 3D multicellular spheroids. Poly(3,4-ethylenedioxythiophene) (PEDOT) was first electrodeposited on a conductive steel mesh as a first template for porous silica coating. Soot particles were then applied as a second template to construct a cauliflower-like silica aerogel nanostructure. After fluorination, a hierarchical structure with re-entrant curvature was finally fabricated as a durable superamphiphobic surface. This superamphiphobic surface also presented excellent antifouling towards biomacromolecules and cells, which has been demonstrated by the successful upward culture of cell spheroids. The upward culture makes the observation of cellular behavior in situ possible, holding great potential for 3D cellular evaluation in vitro.  相似文献   

18.
Huang SH  Hsueh HJ  Jiang YL 《Biomicrofluidics》2011,5(3):34109-3410910
This paper describes a light-addressable electrolytic system used to perform an electrodeposition of calcium alginate hydrogels using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-anode to electrolytically produce protons, which can lead to a decreased pH gradient. The low pH generated at the anode can locally release calcium ions from insoluble calcium carbonate (CaCO3) to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressable electrodeposition of calcium alginate hydrogels with different shapes and sizes, as well as multiplexed micropatterning was performed. The effects of the concentration of the alginate and CaCO3 solutions on the dimensional resolution of alginate hydrogel formation were experimentally examined. A 3 × 3 array of cell-encapsulated alginate hydrogels was also successfully demonstrated through light-addressable electrodeposition. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into cellular microarrays and could have a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery.  相似文献   

19.
We present facile strategies for the fabrication of two types of microfluidic devices made of hydrogels using the natural biopolymers, alginate, and gelatin as substrates. The processes presented include the molding-based preparation of hydrogel plates and their chemical bonding. To prepare calcium-alginate hydrogel microdevices, we suppressed the volume shrinkage of the alginate solution during gelation using propylene glycol alginate in the precursor solution along with sodium alginate. In addition, a chemical bonding method was developed using a polyelectrolyte membrane of poly-L-lysine as the electrostatic glue. To prepare gelatin-based microdevices, we used microbial transglutaminase to bond hydrogel plates chemically and to cross-link and stabilize the hydrogel matrix. As an application, mammalian cells (fibroblasts and vascular endothelial cells) were cultivated on the microchannel surface to form three-dimensional capillary-embedding tissue models for biological research and tissue engineering.  相似文献   

20.
Spherical and non-spherical wax microparticles are generated by employing a facile two-step droplet microfluidic process which consists of the formation of molten wax microdroplets in a flow-focusing microchannel and their subsequent off-chip crystallization and deformation via microdroplet impingement on an immiscible liquid interface. Key parameters on the formation of molten wax microdroplets in a microfluidic channel are the viscosity of the molten wax and the interfacial tension between the dispersed and continuous fluids. A cursory phase diagram of wax morphology transition is depicted depending on the Capillary number and the Stefan number during the impact process. A combination of numerical simulation and analytical modeling is carried out to understand the physics underlying the deformation and crystallization process of the molten wax. The deformation of wax microdroplets is dominated by the viscous and thermal effects rather than the gravitational and buoyancy effects. Non-isothermal crystallization kinetics of the wax illustrates the time dependent thermal effects on the droplet deformation and crystallization. The work presented here will benefit those interested in the design and production criteria of soft non-spherical particles (i.e., alginate gels, wax, and polymer particles) with the aid of time and temperature mediated solidification and off-chip crosslinking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号