首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The high temperature heat pump and desiccant wheel(HTHPDW) system can make full use of heat released from the condenser of heat pump for DW regeneration without additional heat. In this study, DW operation in the HTHPDW system was investigated experimentally, and the optimization analysis of HTHPDW system was carried out. The performance of DW had influence on the dehumidification(evaluated by dehumidification and regeneration effectiveness) and cooling load(evaluated by thermal and adiabatic effectiveness). The results show that the enthalpy increase occurred in all the experiments. Compared to the isosteric heat, heat accumulation in the desiccant and matrix material and heat leakage from regeneration side to process side have greater influence on the adiabatic effectiveness. Higher regeneration temperature leads to lower adiabatic effectiveness that increases more cooling load of the system. When the regeneration temperature is 63℃, the maximal dehumidification effectiveness is 35.4% and the satisfied adiabatic effectiveness is 88%, which contributes to the optimal balance between dehumidification and cooling.  相似文献   

2.
A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.  相似文献   

3.
The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.  相似文献   

4.
A novel voltage output integrated circuit temperature sensor   总被引:1,自引:0,他引:1  
The novel integrated circuit (IC) temperature sensor presented in this paper works similarly as a two-terminal Zener, has breakdown voltage directly proportional to Kelvin temperature at 10 mV/℃, with typical error of less than ±1.0℃ over a temperature range from -50℃ to +125℃. In addition to all the features that conventional IC temperature sensors have, the new device also has very low static power dissipation ( 0.5 mW ) , low output impedance ( less than 1Ω), excellent stability, high reproducibility, and high precision. The sensor's circuit design and layout are discussed in detail. Applications of the sensor include almost any type of temperature sensing over the range of -50℃-+125℃. The low impedance and linear output of the device make interfacing the readout or control circuitry especially easy. Due to the excellent performance and low cost of this sensor, more applications of the sensor over wide temperature range are expected.  相似文献   

5.
This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.  相似文献   

6.
Optimal design of the separate type heat pipe heat exchanger   总被引:2,自引:0,他引:2  
Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effectiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.  相似文献   

7.
The thermolysis of urea-water solution and its product, HNCO hydrolysis is investigated in a dual-reactor system. For the thermal decomposition below about 1073 K, the main products are ammonia (NH3) and isocyanic acid (HNCO) whereas at higher temperatures the oxidation processes take effect and the products include a low concentration of nitric oxide (NO) and nitrous oxide (N2O). The gas HNCO is quite stable and a high yield of HNCO is observed. The ratio of NH3 to HNCO increases from approximately 1.2 to 1.7 with the temperature. The chemical analysis shows that H radical is in favor of HNCO hydrolysis by instigating the reaction HNCO+H·→·NH2+CO and high temperature has positive effect on H radical. The hydrolysis of HNCO over an alumina catalyst made using a sol-gel process (designated as γ-Al2O3) is investigated. The conversion of HNCO is high even at the high space velocities (6×105 h-1) and low temperatures (393–673 K) in the tests with catalysts, which enhances HNCO hydrolysis and raises the ratio of NH3 to HNCO to approximately 100. The pure γ-Al2O3 shows a better catalytic performance than CuO/γ-Al2O3. The addition of CuO not only reduces the surface area but also decreases the Lewis acid sites which are recognized to have a positive effect on the catalytic activity. The apparent activation energy of the hydrolysis reaction amounts to about 25 kJ/mol in 393–473 K while 13 kJ/mol over 473 K. The overall hydrolysis reaction rate on catalysts is mainly determined by external and internal mass-transfer limitations.  相似文献   

8.
This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.  相似文献   

9.
In the hostile and highly corrosive marine environment,advanced composite materials can be used in marine current turbines due to their high strength-to-weight ratios and excellent resistance to corrosion.A composite material marine current turbine(CMMCT),which has significant advantages over traditional designs,has been developed and investigated numerically.A substantial improvement in turbine performance is achieved by placement of a duct to concentrate the energy.Computational fluid dynamics(CFD) results show that the extracted power of a ducted CMMCT can be three to four times the power extracted by a bare turbine of the same turbine area.The results provide an insight into the hydrodynamic design and operation of a CMMCT used to shorten the design period and improve technical performance.  相似文献   

10.
Submarine hydrothermal vents occur over a wide depth range from a few meters to several thousands of meters. Most existing hydrothermal fluid samplers are focused on deep-sea environments and are not suited for collecting shallow-water fluids. In this study, a new gas-tight sampler which can be easily deployed by both submersibles and scuba divers to collect fluid samples from both deep-sea and shallow-water hydrothermal vents is presented. The proposed sampler uses an electric control sampling valve for fluid collection and a system to measure and display the temperature of the hydrothermal fluid while sampling. It is capable of working in manual mode to be controlled via external signals, or in automatic mode to collect a fluid sample according to the temperature. The master-slave architecture of the electronic system makes the sampler flexible in meeting many different deployment requirements. The performance of the sampler has been demonstrated by preliminary field tests at a shallow-water hydrothermal vent site.  相似文献   

11.
A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations.The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particularchar acteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.  相似文献   

12.
目的:开发高效廉价的氧还原反应催化剂。方法:采用超声剥离法,以商业SiC为原料,成功获得了超薄纳米SiC催化剂,对其形貌进行了表征,并对其催化氧还原(ORR)性能进行研究。结果:超声处理能有效地剥离商业SiC,获得超薄催化剂。超薄纳米SiC催化剂对氧还原反应的起始电位和电流密度均与商业Pt/C催化相近,氧还原反应以4电子路径为主,在较低电位下能获得较大的动力学电流。结论:本实验制备的超薄催化剂,有望作为高效低成本燃料电池的潜在材料。  相似文献   

13.
In this paper, an application of a nonlinear predictive controller based on a self recurrent wavelet network (SRWN) model for a direct internal reforming solid oxide fuel cell (DIR-SOFC) is presented. As operating temperature and fuel utilization are two important parameters, the SOFC is identified using an SRWN with inlet fuel flow rate, inlet air flow rate and current as inputs, and temperature and fuel utilization as outputs. To improve the operating performance of the DIR-SOFC and guarantee proper operating conditions, the nonlinear predictive control is implemented using the off-line trained and on-line modified SRWN model, to manipulate the inlet flow rates to keep the temperature and the fuel utilization at desired levels. Simulation results show satisfactory predictive accuracy of the SRWN model, and demonstrate the excellence of the SRWN-based predictive controller for the DIR-SOFC.  相似文献   

14.
纳米线阵列结构温差电材料具有高的热电转换效率 ,非常适合制造输出功率在微瓦量级的微温差电池 .由于纳米线阵列结构温差电材料的厚度通常在十微米至几十微米 ,常规的温差电性能测试技术已不适用 .为此 ,提出了一种新的温差电性能测试技术 ,并建立了相关的测试系统 .  相似文献   

15.
针对三套加氢精制装置用能存在的不足,采取了装置间热联合、优化改进换热网络、充分利用低温热等措施。实现汽油加氢、航煤加氢两套装置的热量集成,汽油加氢的富余高温位热量正好用于航煤加氢装置高温位热量需求,柴油加氢装置低温热也得到了更有效的利用。三套装置经节能改进后,年节约能量488.893 MJ ,节能效果显著。  相似文献   

16.
建立一个主要由熔融碳酸盐燃料电池(MCFC)和斯特林热机组成的新型耦合系统,其中斯特林热机是由在MCFC中产生的高品质废热驱动的。基于电化学和非平衡热力学,考虑各种不可逆损失的影响得到了耦合动力系统的效率和功率输出的解析表达式。研究表明,MCFC的性能可以通过耦合斯特林热机以进一步将废热转化为电输出而大幅度提高。此外,采用数值计算,不仅分析了多个不可逆损失对耦合系统性能的影响,并且还讨论了一些工作条件比如工作温度、输入气体组合以及工作压强对耦合系统性能响。  相似文献   

17.
The heat transfer characteristics of China RP-3 aviation kerosene flowing in a vertical downward tube with an inner diameter of 4 mm under supercritical pressures are numerically studied. A ten-species surrogate model is used to calculate the thermophysical properties of kerosene and the re-normalization group (RNG) k-ε turbulent model with the enhanced wall treatment is adopted to consider the turbulent effect. The effects of mass flow rate, wall heat flux, inlet temperature, and pressure on heat transfer are investigated. The numerical results show that three types of heat transfer deterioration exist for the aviation kerosene flow. The first type of deterioration occurred at the tube inlet region and is caused by the development of the thermal boundary layer, while the other two types are observed when the inner wall temperature or the bulk fuel temperature approaches the pseudo-critical temperature. The heat transfer coefficient increases with the increasing mass flow rate and the decreasing wall heat flux, while the inlet bulk fluid temperature only influences the starting point of the heat transfer coefficient curve plotted against the bulk fluid temperature. The increase of inlet pressure can effectively eliminate the deterioration due to the small variations of properties near the pseudo-critical point at relatively high pressure. The numerical heat transfer coefficients fit well with the empirical correlations, especially at higher pressures (about 5 MPa).  相似文献   

18.
The combustion performance of hydrogen fuel in a scramjet combustor has been a popular focus for scholars all over the world. In this study, the influence of the jet-to-crossflow pressure ratio on combustion performance in a scramjet combustor was investigated numerically, and the influence of a wall-mounted cavity was evaluated. The simulations were conducted using the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the renormalization group (RNG) k-ε turbulence model and the single-step chemical reaction mechanism. This numerical approach was validated by comparing predicted results with published experimental shadowgraphs and velocity and temperature measurements. When the pressure of the wall-injector increases, the performance of the combustor decreases. At the same inflow condition, this may lead to a scram-to-ram mode transition. The cavity adopted in this study would prevent pre-combustion shock waves from pushing out of the isolator and help to stabilize the flow field, but it would decrease the mixing and combustion efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号