首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limited information exists about the movement patterns of field-hockey players, especially during elite competition. Time-motion analysis was used to document the movement patterns during an international field-hockey game. In addition, the movement patterns of repeated-sprint activity were investigated, as repeated-sprint ability is considered to be an important fitness component of team-sport performance. Fourteen members of the Australian men's field-hockey team (age 26+/-3 years, body mass 76.7+/-5.6 kg, VO2max 57.9+/-3.6 ml.kg(-1).min(-1); mean+/-s) were filmed during an international game and their movement patterns were analysed. The majority of the total player game time was spent in the low-intensity motions of walking, jogging and standing (46.5+/-8.1, 40.5+/-7.0 and 7.4+/-0.9%, respectively). In comparison, the proportions of time spent in striding and sprinting were 4.1+/-1.1 and 1.5+/-0.6%, respectively. Our criteria for 'repeated-sprint' activity (defined as a minimum of three sprints, with mean recovery duration between sprints of less than 21 s) was met on 17 occasions during the game (total for all players), with a mean 4+/-1 sprints per bout. On average, 95% of the recovery during the repeated-sprint bouts was of an active nature. In summary, the results suggest that the motion activities of an elite field-hockey competition are similar to those of elite soccer, rugby and Australian Rules football. In addition, the investigation of repeated-sprint activity during competition has provided additional information about the unique physiological demands of elite field-hockey performance.  相似文献   

2.
The aim of this study was to quantify movements of Super 12 rugby players in competition because information on elite rugby players' movements is unavailable. Players were categorized into forwards [front (n = 16) and back row (n = 15)] and backs [inside (n = 9) and outside backs (n = 7)] and their movements analysed by video-based time motion analysis. Movements were classified as rest (standing, walking and jogging) and work (striding, sprinting, static exertion, jumping, lifting or tackling). The total time, number and duration of individual activities were assessed, with differences between groups evaluated using independent sample t-tests (unequal variances), while differences between halves were assessed with paired sample t-tests. Forwards had 7:47 min:s (95% confidence limits: 6:39 to 8:55 min:s, P<0.01) more time in static exertion than backs, but backs spent 0:52 (0:34 to 1:09, P = 0.01) min:s more time sprinting than forwards, and had a 0.7 (0.3 to 1.2, P = 0.01) s longer duration of each sprint. Forwards spent 7:31 (5:55 to 9:08) min:s more time in work activities (P = 0.01) and had 2.1 (1.3 to 2.8) s longer work durations (P<0.01) than backs. The results indicate frequent short duration (<4 s) work efforts followed by moderate duration (<20 s) rest for forwards, and extended (>100 s) rest duration for backs. High-intensity efforts involved static exertion for forwards (mean +/- standard deviation frequency = 80 +/- 17) and sprinting for backs (27 +/- 9). In conclusion, after nearly a decade since becoming professional, elite rugby union is still characterized by highly intense, intermittent movement patterns and marked differences in the competition demands of forwards and backs.  相似文献   

3.
The aim of the study was to assess the match-play activity patterns of elite women field-hockey players using a global positioning system (SPI Elite, GPSports, Fyshwick, Australia). The activity of 25 players was analysed for 13 international matches, totalling 158 player-match analyses. Overall mean playing time was 48 ± 4 min but this varied according to playing position (defenders: 56 ± 11 min; midfielders: 50 ± 10 min; forwards: 38 ± 7 min; P < 0.001, d = 0.57-1.92). In total, 55.5 ± 6.3% of match time was spent performing low-intensity exercise (standing: 5.8 ± 2.7%; walking: 49.7 ± 5.6%). Moderate-intensity exercise accounted for 38.1 ± 5.0% (jogging: 25.8 ± 3.5%; running: 12.3 ± 2.9%) of player match-time, with the remainder made up of high-intensity exercise (fast running: 4.9 ± 1.4%; sprinting: 1.5 ± 0.6%). Forwards spent more time performing moderate- (41.4%) and high-intensity (7.7%) exercise than defenders and midfield players (P < 0.001). This is the first study to use a global positioning system to assess the activity characteristics of elite female hockey players and demonstrate that these characteristics differ according to playing position. These differences are probably attributable to the ways in which substitution of players occurs.  相似文献   

4.
Abstract

We compared the movement patterns of cricketers in different playing positions across three formats of cricket (Twenty20, One Day, multi-day matches). Cricket Australia Centre of Excellence cricketers (n = 42) from five positions (batting, fast bowling, spin bowling, wicketkeeping, and fielding) had their movement patterns (walk, jog, run, stride, and sprint) quantified by global positioning system (GPS) technology over two seasons. Marked differences in movement patterns were evident between positions and game formats, with fast bowlers undertaking the greatest workload of any position in cricket. Fast bowlers sprinted twice as often, covered over three times the distance sprinting, with much smaller work-to-recovery ratios than other positions. Fast bowlers during multi-day matches covered 22.6 ± 4.0 km (mean ± s) total distance in a day (1.4 ± 0.9 km in sprinting). In comparison, wicketkeepers rarely sprinted, despite still covering a daily total distance of 16.6 ± 2.1 km. Overall, One Day and Twenty20 cricket required ~50 to 100% more sprinting per hour than multi-day matches. However, multi-day cricket's longer duration resulted in 16–130% more sprinting per day. In summary, the shorter formats (Twenty20 and One Day) are more intensive per unit of time, but multi-day cricket has a greater overall physical load.  相似文献   

5.
A simulated cricket batting innings was developed to replicate the physical demands of scoring a century during One-Day International cricket. The simulated innings requires running-between-the-wickets across six 5-over stages, each of 21 min duration. To validate whether the simulated batting innings is reflective of One-Day International batting, movement patterns were collected using a global positioning system (GPS) and compared with previous research. In addition, indicators of physical strain were recorded (heart rate, jump heights, sweat loss, tympanic temperature). Nine club cricketers (mean ± s: age 20 ± 3 years; body mass 79.5 ± 7.9 kg) performed the simulated innings outdoors. There was a moderate trend for distance covered in the simulated innings to be less than that during One-Day batting (2171 ± 157 vs. 2476 ± 631 m · h?1; effect size = 0.78). This difference was largely explained by a strong trend for less distance covered walking in the simulated innings than in One-Day batting (1359 ± 157 vs. 1604 ± 438 m · h?1; effect size = 1.61). However, there was a marked trend for distance covered both striding and sprinting to be greater in the simulated innings than in One-Day batting (effect size > 1.2). Practically, the simulated batting innings may be used for match-realistic physical training and as a research protocol to assess the demands of prolonged, high-intensity cricket batting.  相似文献   

6.
Limited information exists about the movement patterns of field-hockey players, especially during elite competition. Time–motion analysis was used to document the movement patterns during an international field-hockey game. In addition, the movement patterns of repeated-sprint activity were investigated, as repeated-sprint ability is considered to be an important fitness component of team-sport performance. Fourteen members of the Australian men's field-hockey team (age 26±3 years, body mass 76.7±5.6?kg, [Vdot]O2max 57.9±3.6?ml?·?kg?1?·?min?1; mean±s) were filmed during an international game and their movement patterns were analysed. The majority of the total player game time was spent in the low-intensity motions of walking, jogging and standing (46.5±8.1, 40.5±7.0 and 7.4±0.9%, respectively). In comparison, the proportions of time spent in striding and sprinting were 4.1±1.1 and 1.5±0.6%, respectively. Our criteria for ‘repeated-sprint’ activity (defined as a minimum of three sprints, with mean recovery duration between sprints of less than 21?s) was met on 17 occasions during the game (total for all players), with a mean 4±1 sprints per bout. On average, 95% of the recovery during the repeated-sprint bouts was of an active nature. In summary, the results suggest that the motion activities of an elite field-hockey competition are similar to those of elite soccer, rugby and Australian Rules football. In addition, the investigation of repeated-sprint activity during competition has provided additional information about the unique physiological demands of elite field-hockey performance.  相似文献   

7.
The aim of this study was to quantify movements of Super 12 rugby players in competition because information on elite rugby players' movements is unavailable. Players were categorized into forwards [front (n = 16) and back row (n = 15)] and backs [inside (n = 9) and outside backs (n = 7)] and their movements analysed by video-based time motion analysis. Movements were classified as rest (standing, walking and jogging) and work (striding, sprinting, static exertion, jumping, lifting or tackling). The total time, number and duration of individual activities were assessed, with differences between groups evaluated using independent sample t-tests (unequal variances), while differences between halves were assessed with paired sample t-tests. Forwards had 7:47?min:s (95% confidence limits: 6:39 to 8:55?min:s, P<0.01) more time in static exertion than backs, but backs spent 0:52 (0:34 to 1:09, P = 0.01) min:s more time sprinting than forwards, and had a 0.7 (0.3 to 1.2, P = 0.01) s longer duration of each sprint. Forwards spent 7:31 (5:55 to 9:08) min:s more time in work activities (P = 0.01) and had 2.1 (1.3 to 2.8) s longer work durations (P<0.01) than backs. The results indicate frequent short duration (<4?s) work efforts followed by moderate duration (<20?s) rest for forwards, and extended (>100?s) rest duration for backs. High-intensity efforts involved static exertion for forwards (mean?±?standard deviation frequency = 80?±?17) and sprinting for backs (27?±?9). In conclusion, after nearly a decade since becoming professional, elite rugby union is still characterized by highly intense, intermittent movement patterns and marked differences in the competition demands of forwards and backs.  相似文献   

8.
Abstract

The aim of this study was to determine the physical demands of women’s rugby union match play using time–motion analysis and heart rate (HR) response. Thirty-eight premier club level female rugby players, ages 18–34 years were videotaped and HRs monitored for a full match. Performances were coded into 12 different movement categories: 5 speeds of locomotion (standing, walking, jogging, striding, sprinting), 4 forms of intensive non-running exertion (ruck/maul/tackle, pack down, scrum, lift) and 3 discrete activities (kick, jump, open field tackle). The main results revealed that backs spend significantly more time sprinting and walking whereas forwards spend more time in intensive non-running exertion and jogging. Forwards also had a significantly higher total work frequency compared to the backs, but a higher total rest frequency compared to the backs. In terms of HR responses, forwards displayed higher mean HRs throughout the match and more time above 80% of their maximum HR than backs. In summary, women’s rugby union is characterised by intermittent bursts of high-intensity activity, where forwards and backs have similar anaerobic energy demands, but different specific match demands.  相似文献   

9.
The physical demands of elite English rugby union   总被引:1,自引:1,他引:0  
The aim of this study was to assess the physical demands of elite English rugby union match-play. Player movements were captured by five distributed video cameras and then reconstructed on a two-dimensional plane representing the pitch. Movements based on speeds were categorized as standing, walking, jogging, and medium-intensity running (low-intensity activity), and high-intensity running, sprinting, and static exertion (scrummaging, rucking, mauling, and tackling) (high-intensity activity). Position groups were defined as forwards (tight and loose) and backs (inside and outside). Backs travelled more total distance than forwards (6127 m, s=724 vs. 5581 m, s=692; P<0.05) and greater distances in walking (2351 m, s=287 vs. 1928 m, s=2342; P<0.001) and high-intensity running (448 m, s=149 vs. 298 m, s=107; P<0.05). Forwards performed more high-intensity activity than backs (9:09 min:s, s=1:39 vs. 3:04 min:s, s=1:01; P<0.001), which was attributable to more time spent in static exertion (7:56 min:s, s=1:56 vs. 1:18 min:s, s=0:30; P<0.001), although backs spent more time in high-intensity running (0:52 min:s, s=0:19 vs. 1:19 min:s, s=0:26; P=0.004). Players travelled a greater distance in the first 10 min compared with 50-60 and 70-80 min, but there was no difference in the amount of high-intensity activity performed during consecutive 10-min periods during match-play. These results show the differing physical demands between forwards and backs with no evident deterioration in high-intensity activity performed during match-play.  相似文献   

10.
Match analysis and heart rate of futsal players during competition   总被引:3,自引:1,他引:2  
Heart rates were monitored and time-motion analysis performed for 10 players (mean age 25.6 years, s = 2.5; body mass 73.8 kg, s = 5.7 kg; height 1.75 m, s = 0.06) during four competitive futsal matches. Mean heart rate during the match was 90% (s = 2) of maximum heart rate. Heart rate records were classified based on the percentage of time spent in three zones (>85%, 85-65%, and <65% maximum heart rate); players spent 83%, 16%, and 0.3% in these three zones, respectively. During the second period, there was a significant reduction (P < 0.01) in the percentage of time spent at an intensity above 85% of maximum heart rate (first vs. second period: 86% vs. 79%). Players' movements were classified as standing, walking, jogging, medium-intensity running, high-intensity running, and sprinting (maximal speed running). Time-motion analysis indicated that the mean distance covered per minute of play was 117.3 m (s = 11.6), of which 28.5% (s = 2.2) was covered while performing medium-intensity running, 13.7% (s = 2) during high-intensity running, and 8.9% (s=3.4) while sprinting. From the results, we conclude that futsal is a multiple-sprints sport in which there are more high-intensity phases than in soccer and other intermittent sports.  相似文献   

11.
The aims of the present study were (1) to analyse the physical demands of top-class referees and (2) to compare their official FIFA fitness test results with physical performance during a match. The work rate profiles of 11 international referees were assessed during 12 competitive matches at the 2003 FIFA Under-17 World Cup and then analysed using a bi-dimensional photogrammetric video analysis system based on direct lineal transformation (DLT) algorithms. In the first 15 min of matches, the referees were more active, performing more high-intensity exercise (P < 0.01) than in the first 15 min of the second half. During the second half of matches, the referees covered a shorter distance (P < 0.01), spent more time standing still (P < 0.05), and covered less ground cruising (P < 0.05), sprinting (P < 0.05), and moving backwards (P < 0.001) than in the first half. Also in the second 45 min, the distance of referees from infringements increased (P < 0.05) in the left attacking zone of the filed. There was also a decrease (P < 0.05) in performance in the period following the most high-intensity activity, compared with the mean for the 90 min. Time spent performing high-intensity activities during a match was not related to performance in the 12-min run (r(2) = 0.30; P < 0.05), the 200-m sprint (r(2) = 0.05; P < 0.05), or the 50-m sprint (r(2) = 0.001; P < 0.05). The results of this study show that: (1) top-class referees experienced fatigue at different stages of the match, and (2) the typical field tests used by FIFA (two 50-m and 200-m sprints, followed by a 12-min run) are not correlated with match activities.  相似文献   

12.
The purpose of the study was to describe the differences in the activity demands of sub-elite and elite Australian men's basketball competition. Ten elite (age 28.3 ± 4.9 years, mass 97.0 ± 13.9 kg, height 197.4 ± 8.3 cm) and 12 sub-elite (age 26.1 ± 5.3 years, mass 85.9 ± 13.2 kg, height 191.4 ± 7.6 cm) Australian basketball players participated in the study. Player activity was analysed using video-based time-motion analysis across multiple in-season matches. Customized analytical software was used to calculate player activity into frequencies, mean and total durations (s), and mean and total distances (m) for standing/walking, jogging, running, sprinting, low shuffling, high shuffling, and dribbling movements. Only movement frequency was calculated for jumping and upper body activity. Multivariate analysis of variance revealed that elite players performed significantly more total movement changes (P <0.001), and experienced greater activity workloads while jogging (P <0.01) and running (P <0.002). In contrast, sub-elite players performed significantly more standing/walking (P <0.023) and sprinting (P <0.003) activities. These data suggest that elite basketball competition requires a greater intermittent workload and more sustained activity demands, whereas sub-elite competition may involve greater bursts of activity and longer recovery periods. These differences are likely to reflect variations in player skill and fitness, as well as playing structure between playing standards.  相似文献   

13.
Abstract

A simulated cricket batting innings was developed to replicate the physical demands of scoring a century during One-Day International cricket. The simulated innings requires running-between-the-wickets across six 5-over stages, each of 21 min duration. To validate whether the simulated batting innings is reflective of One-Day International batting, movement patterns were collected using a global positioning system (GPS) and compared with previous research. In addition, indicators of physical strain were recorded (heart rate, jump heights, sweat loss, tympanic temperature). Nine club cricketers (mean ± s: age 20 ± 3 years; body mass 79.5 ± 7.9 kg) performed the simulated innings outdoors. There was a moderate trend for distance covered in the simulated innings to be less than that during One-Day batting (2171 ± 157 vs. 2476 ± 631 m · h?1; effect size = 0.78). This difference was largely explained by a strong trend for less distance covered walking in the simulated innings than in One-Day batting (1359 ± 157 vs. 1604 ± 438 m · h?1; effect size = 1.61). However, there was a marked trend for distance covered both striding and sprinting to be greater in the simulated innings than in One-Day batting (effect size > 1.2). Practically, the simulated batting innings may be used for match-realistic physical training and as a research protocol to assess the demands of prolonged, high-intensity cricket batting.  相似文献   

14.
Running is the most important discipline for Olympic triathlon success. However, cycling impairs running muscle recruitment and performance in some highly trained triathletes; though it is not known if this occurs in elite international triathletes. The purpose of this study was to investigate the effect of cycling in two different protocols on running economy and neuromuscular control in elite international triathletes. Muscle recruitment and sagittal plane joint angles of the left lower extremity and running economy were compared between control (no preceding cycle) and transition (preceded by cycling) runs for two different cycle protocols (20-minute low-intensity and 50-minute high-intensity cycles) in seven elite international triathletes. Muscle recruitment and joint angles were not different between control and transition runs for either cycle protocols. Running economy was also not different between control and transition runs for the low-intensity (62.4 +/- 4.5 vs. 62.1 +/- 4.0 ml/min/kg, p > 0.05) and high-intensity (63.4 +/- 3.5 vs. 63.3 +/- 4.3 ml/min/kg, p > 0.05) cycle protocols. The results of this study demonstrate that both low- and high-intensity cycles do not adversely influence neuromuscular control and running economy in elite international triathletes.  相似文献   

15.
采取GPS全球定位系统和心率监测系统对14名大学足球专项学生在3场课堂教学比赛中的内、外部运动负荷进行量化,采用数据级数推断法对比其上、下半场比赛负荷的差异性。结果显示:(1)足球专项课堂教学比赛中,大学足球专项学生平均跑动距离为8 319 m,平均跑动速度为5.59 km/h,平均完成19次高速跑和7.6次冲刺跑。学生在上半场的跑动总距离,平均跑动速度,慢速跑、低速跑、中低速跑、中速跑、中高速跑和高速跑跑动距离、跑动时间与次数,高强度减速跑跑动距离和时间,低强度减速跑跑动距离、时间和次数,低强度加速跑跑动距离和次数,加速度负荷、反复高强度跑动次数都明显高于下半场(ES介于0.35~1.22,可能性>75%),上半场的步行移动时间(ES=0.94,可能性>99.5%)和反复高强度跑动的平均恢复时间(ES=1.60,可能性>99.9%)则明显低于下半场;(2)大学足球专项学生的课堂教学赛的比赛时的平均心率为165 次/分钟,约占最大心率的82.8%,大学足球专项学生在整场课堂教学比赛59.5%的时间中处于中高强度和高强度心率区间,学生在下半场处在中高强度心率区间的时间明显多于上半场(ES=0.5,可能性介于75%~95%),而上、下半场处在高强度心率区间的时间只存在微小无意义的差异(ES=0.15,可能性介于75%~95%)。  相似文献   

16.
The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption (.VO(2max)) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts .VO(2max) at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 - 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of .VO(2max) (low-intensity trial: mean 40.5 ml . kg(-1) . min(-1), s = 9.3; high-intensity trial: 47.5 ml . kg(-1) . min(-1), s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a .VO(2max) test (mean 47.9 ml . kg(-1) . min(-1), s = 8.9). The low-intensity trial underestimated (mean difference = -3.5 ml . kg(-1) . min(-1); 95% CI = -6.4 to -0.6 ml . kg(-1) . min(-1); P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml . kg(-1) . min(-1); 95% CI = 1.1 to 6.0 ml . kg(-1) . min(-1); P = 0.01) the measured .VO(2max). The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

17.
Changes in workload are evident during many physical activities. The aim of this study was to assess total substrate metabolism when the temporal placement of a period of higher-intensity work (75% VO 2max ) was varied within a low-intensity exercise session (50% VO 2max ). One experimental trial (higher intensity first) comprised 5 min low-intensity work, followed by 15 min high-intensity work, followed by 40 min low-intensity work. The other trial (low intensity first) comprised 40 min low-intensity work, followed by 15 min high-intensity work, followed by 5 min low-intensity work. The trials were designed to achieve an identical total energy expenditure. Energy expenditure, fat and carbohydrate utilization were estimated by expired gas analysis and compared between conditions. Mean total energy expenditure during the higher-intensity phase was 1076 kJ and 1128 kJ in the high-intensity first and low-intensity first trials respectively (t 6 = -3.76, P = 0.0047). Mean total energy expenditure for the whole trial was 3356 kJ and 3452 kJ in the high-intensity first and low-intensity first trials respectively (t 6 = -3.48, P = 0.0065). Mean whole-trial fat utilization was 1753 kJ and 1857 kJ in the high-intensity first and low-intensity first trials respectively (t 6 = -0.76, P = 0.24). Our findings suggest that changing the temporal placement of higher-intensity work within a low-intensity exercise session has a significant effect on total energy expenditure but not on the rate of fat oxidation.  相似文献   

18.
Changes in workload are evident during many physical activities. The aim of this study was to assess total substrate metabolism when the temporal placement of a period of higher-intensity work (75% VO2max) was varied within a low-intensity exercise session (50% VO2max). One experimental trial (higher intensity first) comprised 5 min low-intensity work, followed by 15 min high-intensity work, followed by 40 min low-intensity work. The other trial (low intensity first) comprised 40 min low-intensity work, followed by 15 min high-intensity work, followed by 5 min low-intensity work. The trials were designed to achieve an identical total energy expenditure. Energy expenditure, fat and carbohydrate utilization were estimated by expired gas analysis and compared between conditions. Mean total energy expenditure during the higher-intensity phase was 1076 kJ and 1128 kJ in the high-intensity first and low-intensity first trials respectively (t6 = -3.76, P = 0.0047). Mean total energy expenditure for the whole trial was 3356 kJ and 3452 kJ in the high-intensity first and low-intensity first trials respectively (t6 = -3.48, P = 0.0065). Mean whole-trial fat utilization was 1753 kJ and 1857 kJ in the high-intensity first and low-intensity first trials respectively (t6 = -0.76, P = 0.24). Our findings suggest that changing the temporal placement of higher-intensity work within a low-intensity exercise session has a significant effect on total energy expenditure but not on the rate of fat oxidation.  相似文献   

19.
Abstract

This study compared physiological, physical and technical demands of Battlezone, traditional cricket training and one-day matches. Data were initially collected from 11 amateur, male cricket players (age: 22.2 ± 3.3 year, height: 1.82 ± 0.06 m body mass: 80.4 ± 9.8 kg) during four Battlezone and four traditional cricket training sessions encompassing different playing positions. Heart rate, blood lactate concentration, rating of perceived exertion and movement patterns of players were measured. Retrospective video analysis was performed to code for technical outcomes. Similar data were collected from 42 amateur, male cricket players (23.5 ± 4.7 year, 1.81 ± 0.07 m, 81.4 ± 11.4 kg) during one-day matches. Significant differences were found between Battlezone, traditional cricket training and one-day matches within each playing position. Specifically, Battlezone invoked the greatest physiological and physical demands from batsmen in comparison to traditional cricket training and one-day matches. However, the greatest technical demand for batsmen was observed during traditional cricket training. In regards to the other playing positions, a greater physiological, physical and technical demand was observed during Battlezone and traditional training than during one-day matches. These results suggest that the use of Battlezone and traditional cricket training provides players with a suitable training stimulus for replicating the physiological, physical and technical demands of one-day cricket.  相似文献   

20.
The aim of this study was to quantify the movement patterns of various playing positions during professional rugby union match-play, such that the relative importance of aerobic and anaerobic energy pathways to performance could be estimated. Video analysis was conducted of individual players (n=29) from the Otago Highlanders during six "Super 12" representative fixtures. Each movement was coded as one of six speeds of locomotion (standing still, walking, jogging, cruising, sprinting, and utility), three states of non-running intensive exertion (rucking/mauling, tackling, and scrummaging), and three discrete activities (kicking, jumping, passing). The results indicated significant demands on all energy systems in all playing positions, yet implied a greater reliance on anaerobic glycolytic metabolism in forwards, due primarily to their regular involvement in non-running intense activities such as rucking, mauling, scrummaging, and tackling. Positional group comparisons indicated that while the greatest differences existed between forwards and backs, each positional group had its own unique demands. Front row forwards were mostly involved in activities involving gaining/retaining possession, back row forwards tended to play more of a pseudo back-line role, performing less rucking/mauling than front row forwards, yet being more involved in aspects of broken play such as sprinting and tackling. While outside backs tended to specialize in the running aspects of play, inside backs tended to show greater involvement in confrontational aspects of play such as rucking/mauling and tackling. These results suggest that rugby training and fitness testing should be tailored specifically to positional groups rather than simply differentiating between forwards and backs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号