首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
本刊82年第6期宗岳老师编译的《几何重观§1.9(下简称文[Ⅰ])中指出:从△ABC内任意点P分别作BC、CA、AB的垂线,则垂足A′、B′、C′组成的△A′B′C′叫做△ABC关于点P的垂足三角形.在文[Ⅰ]的启发下,我们得到了关于点P的垂足三角形中的几个不等  相似文献   

2.
271.△ABC的内切圆⊙O切BC、CA、AB于A′、B′、C′,过O点分别作△A′B′C′各边的平行线,它们在BC、CA、AB上截得的线段分别为EF、MN、PQ,试证: EF/BC+MN/CA+PQ/AB=1。证:如图1,连OC、QE、MF。由EN∥A′B′和OC⊥A′B′得OC⊥EN。但OC平分∠ECN,故ON=OE。同理,OM=OQ,所以,△OMN≌OQE,EQ(?)MN。同理得到FM(?)PQ。于是有△QBE∽△ABC∽△MFC。于是 MN/CA=QE/CA=BE/BC,  相似文献   

3.
金磊 《中等数学》2013,(8):47-49
本期问题高351如图1,不等边△ABC的内切圆分别与三边BC、CA、AB切于点D、E、F,A′、B′、C′分别是边BC、CA、AB的中点,D′、E′、F′分别为点D、E、F在△DEF的边EF、FD、DE上的射影.证明:A′D′、B′E′、C′F′三线共点.  相似文献   

4.
文[1]研究了三角形2号心的性质,本文做进一步探讨.定理1 设 P 为△ABC 所在平面内任一点,P 关于△ABC 的边 BC、CA、AB 的中点 D、E、F 的对称点分别为 A′、B′、C′,则(Ⅰ)AA′、BB′、CC′交于一点;  相似文献   

5.
定理 设P、Q为△ABC内两点 ,则AP·AQAB·AC +BP·BQBA·BC+CP·CQCA·CB≥ 1 . ( )等式当且仅当P、Q为△ABC等角共轭点 (即∠PAB=∠QAC ,∠PBC =∠QBA ,∠PCB =∠QCA)时成立 .证明 :如图 ,顺次以BC、CA、AB为对称轴作△PBC、△PCA、△PAB的对称图形 ,分别为△A′BC ,△B′CA ,△C′AB ,连结A′Q、B′Q、C′Q ,则易知 (以S△ 表示面积 ) :S△AC′Q+S△AB′Q=12 AC′·AQsin∠C′AQ +12 AQ·AB′sin∠B′AQ =12 AP·AQ(sin∠C′AQ +sin∠B′AQ)=12 AP·AQ·2sin ∠C′AQ +∠B′AQ2 ·c…  相似文献   

6.
1 基础知识梅涅劳斯定理 设A′、B′、C′分别是△ABC的三边BC、CA、AB或其延长线上的点 .若A′、B′、C′三点共线 ,则 BA′A′C·CB′B′A·AC′C′B=1 .①证明 :如图 1 ,过A作AD∥C′A′交BC延长线于D ,则  CB′B′A=CA′A′D,AC′C′B =DA′A′B ,故  BA′A′C·CB′B′A·AC′C′B =BA′A′C·CA′A′D·DA′A′B=1 .梅涅劳斯定理的逆定理 设A′、B′、C′分别是△ABC的三边BC ,CA ,AB或其延长线上的点 ,若BA′A′C·CB′B′A·AC′C′B =1 ,②则A′、B′、C′三点共线 .证明 :设直线A…  相似文献   

7.
定义1[1]与△ABC外接圆在顶点C处的切线l平行直线A′B′称为AB的逆平行线.如图1,若A′B′逆平行于AB且交CA、CB分别为点A′、B′,则△A′B′C逆向相似于△ABC.莫要看它有点古怪,有时将起到出奇制胜的功效.  相似文献   

8.
<正>概念设P是△ABC内的任意一点,从该点向BC、CA、AB分别引垂线PA1、PB1、PC1(如图1),以它们的垂足A1、B1、C1为顶点的三角形A1B1C1称为△ABC关于"垂心"P的垂足三角形.问题对任一给定的△ABC与△ABC中给定的一个内点,第三个垂足三角形A3B3C3与△ABC相似吗?若相似,相似比能恰当地表示吗?纽伯格(J.Neuberg)已证明了第三个垂足三角形与原三角形是相似的.  相似文献   

9.
宋强 《中等数学》2010,(2):12-12
题目 已知A1、B1、C1分别是△ABC的边BC、CA、AB上的点,△AB1C1、△BC1A1、△CA1B1的外接圆与△ABC的外接圆分别交于点A2、B2、C2(A2≠A,B2≠B,C2≠C),A3、B3、C3分别是A1、B1、C1关于边BC、CA、AB的中点的对称点.证明:  相似文献   

10.
对于能够完全重合的三角形,要使两个三角形重合,则需要搬动图形,通常是以某个三角形为基准(不动),把与其全等的另一个三角形通过平移、旋转或翻折三种方法使其与基准三角形重合。一、平移变形找全等三角形例1如图1,已知AB∥A′B′,AC∥A′C′,BB′∥CC′,求证△ABC≌△A′B′C′.分析:将△A′B′C′沿箭头方向平移使A′与A;B′与B,C′与C分别重合,记为A′→A;B′→B;C′→C.例2如图2,B、C、E在一条直线上,CE=BC,AB⊥BE,DC⊥BE,B、C为垂足,AC∥DE.求证△ABC≌△DCE.分析:将△ABC沿箭头方向平移后使A→D,B→C,C→…  相似文献   

11.
1 基础知识塞瓦定理 设A′、B′、C′分别是△ABC的三边BC、CA、AB或其延长线上的点 .若AA′、BB′、CC′三线平行或共点 ,则 BA′A′C·CB′B′A·AC′C′B=1 .①证明 :若AA′、BB′、CC′交于一点P ,如图 1 (b) ,过A作BC的平行线 ,分别交BB′、CC′的延长线于D、E ,得 CB′B′A=BCAD,AC′C′B=EABC .又由 BA′AD =A′PPA =A′CEA ,有 BA′A′C=ADEA .从而 BA′A′C·CB′B′A·AC′C′B=ADEA·BCAD·EABC =1 .若AA′、BB′、CC′三线平行 ,可类似证明 (略 ) .注 :对于图 1 (b)也有如下面…  相似文献   

12.
1971年,Ju.I.Gerasimov给出了下述三角形不等式: 设△ABC内部任一点P至边BC、CA、AB的距离分别为r_1、r_2、r_3,边BC、CA、AB分别为a、b、c.则 (r_2r_3)/(bc) (r_3r_1)/(ca) (r_1r_2)/(ab)≤1/4. (1)等号仅当P为△ABC的外心时成立. 在已知的有关△ABC、△A′B′C′及任意正数x、y、z的不等式 (1 y z)~2≥4(yzsinAsinA′ zxsinBsinB′ xysinCsinC′)(2)  相似文献   

13.
每期一题     
题:△ABC是⊙○内接锐角三角形,射线AO、BO、CO各交⊙○于A′、B′、C′。记BC=a、CA=b、AB=C,BC′=B′C=a′CA′=C′A=b′、AB′=A′B=c′。求证:abc=ab′c′+a′bc′+a′b′c。分析:本题结论可以改写成: b′c′/bc+c′a′/ca+a′b′/ab=1; 由于∠BA′C与∠BAC互补、∠CB′A与∠CBA互补、∠AC′B与∠ACB互补,  相似文献   

14.
一、设△ABC的面积为I,0相似文献   

15.
1 问题 △ABC中,A1、B1、C1分别在边BC、CA、AB上,且AA1、BB1、CC1相交于点P.证明:P是△ABC的重心当且仅当P是△A1B1C1的重心.  相似文献   

16.
每期一题     
题:过锐角三角形△ABC顶点分别作该三角形外接圆的三条直径AA′、BB′、CC′,则△ABC的面积等于△Ab′C、△CA′B、△BC′A的面积之和(芜湖市初中数学竞赛命题小组)  相似文献   

17.
三角形对称外心的性质及其应用   总被引:1,自引:0,他引:1  
关于三角形内特殊点的发现及其性质的挖掘 ,可见文 [1 ]和文 [2 ] ,经过研究 ,本文得到了三角形的对称外心的性质及其应用 .定义 设△ ABC的外心为 O,点 O关于边图 1BC、CA、AB的对称点分别为 A′、B′、C′,连接AA′、BB′、CC′,则 AA′、BB′、CC′相交于一点O′,称此点 O′为△ ABC的对称外心 .证明 :如图 1 ,由平行四边形 OBA′C对角线互相平分知 A′C∥ OB,且 AC′=OB,同理得AC′∥ OB,且 AC =DB,故四边形 AC′A′C是平行四边形 ,所以 AA′和 CC′相交于中点 O′,同理可知 BB′也过点 O′,所以 AA′、BB…  相似文献   

18.
在测量不易直接度量的物体的高度时,有很多的方法和依据.在此以测量旗杆的高度为例,给同学们介绍利用相似三角形来解决这此类问题的一些方法.方法1:利用阳光下的影子(如图1),只需卷尺一个即可.步骤:(1)先测量观测者的身高———A′B′的长度;(2)在同一时刻分别测出旗杆AB的影长BC和身体的影长B′C′;(3)利用相似三角形性质可求AB之长.依据:如图1,因为太阳光线可看作平行光线,所以∠A′C′B′=∠ACB,又因为∠A′B′C′=∠ABC=90°,所以△A′B′C′∽△ABC,所以AA′BB′=BB′CC′.又因为A′B′,B′C′,BC都可测量,从而AB可…  相似文献   

19.
AB是Rt△ABC的斜边,在射线 AC、BC上各取一点B′、A′,使得A′B=AB′=AB,P、Q是形内两点,若P、Q到Rt△ABC各边距离之和相等,则PQ∥A′B′,反之亦然。  相似文献   

20.
黄樊 《中等数学》2014,(6):15-16
题目 在△ABC中,已知点P、Q、R分别位于边BC、CA、AB上,圆ГA、ГB、ГC分别是△AQR、△BRP、△CPQ的外接圆,线段AP与圆ГA、ГB、ГC分别交于点X、Y、Z.证明:YZ/XZ=BP/PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号