首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundPiercing/sucking insect pests in the order Hemiptera causes substantial crop losses by removing photoassimilates and transmitting viruses to their host plants. Cloning and heterologous expression of plant-derived insect resistance genes is a promising approach to control aphids and other sap-sucking insect pests. While expression from the constitutive 35S promoter provides broad protection, the phloem-specific rolC promoter provides better defense against sap sucking insects. The selection of plant-derived insect resistance genes for expression in crop species will minimize bio-safety concerns.ResultsPinellia ternata leaf agglutinin gene (pta), encodes an insecticidal lectin, was isolated and cloned under the 35S and rolC promoters in the pGA482 plant transformation vector for Agrobacterium-mediated tobacco transformation. Integration and expression of the transgene was validated by Southern blotting and qRT-PCR, respectively. Insect bioassays data of transgenic tobacco plants showed that expression of pta under rolC promoter caused 100% aphid mortality and reduced aphid fecundity up to 70% in transgenic tobacco line LRP-9. These results highlight the better effectivity of pta under rolC promoter to control phloem feeders, aphids.ConclusionsThese findings suggested the potential of PTA against aphids and other sap sucking insect pests. Evaluation of gene in tobacco under two different promoters; 35S constitutive promoter and rolC phloem-specific promoter could be successfully use for other crop plants particularly in cotton. Development of transgenic cotton plants using plant-derived insecticidal, PTA, would be key step towards commercialization of environmentally safe insect-resistant crops.How to citeUmer N, Naqvi RZ, Rauf I, et al. Expression of Pinellia ternata leaf agglutinin under rolC promoter confers resistance against a phytophagous sap sucking aphid, Myzus persicae. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.004.  相似文献   

2.
Backgroundγ-Aminobutyric acid (GABA) bypasses the TCA cycle via GABA shunt, suggesting a relationship with respiration. However, little is known about its role in seed germination under salt conditions.ResultsIn this study, exogenous GABA was shown to have almost no influence on mungbean seed germination, except 0.1 mM at 10 h, while it completely alleviated the inhibition of germination by salt treatment. Seed respiration was significantly inhibited by 0.1 and 0.5 mM GABA, but was evidently enhanced under salt treatment, whereas both were promoted by 1 mM GABA alone or with salt treatment. Mitochondrial respiration also showed a similar trend at 0.1 mM GABA. Moreover, proteomic analysis further showed that 43 annotated proteins were affected by exogenous GABA, even 0.1 mM under salt treatment, including complexes of the mitochondrial respiratory chain.ConclusionsOur study provides new evidence that GABA may act as a signal molecule in regulating respiration of mungbean seed germination in response to salt stress.How to citeJi J, Shi S, Chen W, et al. Effects of exogenous γ-Aminobutyric acid on the regulation of respiration and protein expression in germinating seeds of mungbean (Vigna radiata) under salt conditions. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.05.005  相似文献   

3.
BackgroundWheat is one of the most important crops cultivated all over the world. New high-yielding cultivars that are more resistant to fungal diseases have been permanently developed. The present study aimed at the possibility of accelerating the process of breeding new cultivars, resistant to eyespot, by using doubled haploids (DH) system supported by marker-assisted selection.ResultsTwo highly resistant breeding lines (KBP 0916 and KBH 4942/05) carrying Pch1 gene were crossed with the elite wheat genotypes. Hybrid plants of early generations were analyzed using endopeptidase EpD1 and two SSR markers linked to the Pch1 locus. Selected homozygous and heterozygous genotypes for the Pch1-linked EpD1b allele were used to produce haploid plants. Molecular analyses were performed on haploids to identify plants possessing Pch1 gene. Chromosome doubling was performed only on haploid plants with Pch1 gene. Finally, 65 DH lines carrying eyespot resistance gene Pch1 and 30 lines without this gene were chosen for the eyespot resistance phenotyping in a field experiment.ConclusionsResults of the experiment confirmed higher resistance to eyespot of the genotypes with Pch1 in comparison to those without this gene. This indicates the efficiency of selection at the haploid level.How to cite: Wiśniewska H, Majka M, Kwiatek M, et al. Production of wheat doubled haploids resistant to eyespot supported by marker-assisted selection. Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.10.003  相似文献   

4.
BackgroundMaize is one of the most important crops worldwide and has been a target of nuclear-based transformation biotechnology to improve it and satisfy the food demand of the ever-growing global population. However, the maize plastid transformation has not been accomplished due to the recalcitrant condition of the crop.ResultsIn this study, we constructed two different vectors with homologous recombination sequences from maize (Zea mays var. LPC13) and grass (Bouteloua gracilis var. ex Steud) (pZmcpGFP and pBgcpGFP, respectively). Both vectors were designed to integrate into rrn23S/rrn16S from an inverted repeat region in the chloroplast genome. Moreover, the vector had the mgfp5 gene driven by Prrn, a leader sequence of the atpB gene and a terminator sequence from the rbcL gene. Also, constructs have an hph gene as a selection marker gene driven by Prrn, a leader sequence from rbcL gene and a terminator sequence from the rbcL gene. Explants of maize, tobacco and Escherichia coli cells were transformed with both vectors to evaluate the transitory expression–an exhibition of green and red fluorescent light under epifluorescence microscopy. These results showed that both vectors were expressed; the reporter gene in all three organisms confirmed the capacity of the vectors to express genes in the cell compartments.ConclusionsThis paper is the first report of transient expression of GFP in maize embryos and offers new information for genetically improving recalcitrant crops; it also opens new possibilities for the improvement in maize chloroplast transformation with these vectors.How to cite: Arévalo-Gallegos S, Varela-Rodríguez H, Lugo-Aguilar H, et al. Transient expression of a green fluorescent protein in tobacco and maize chloroplast. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.008  相似文献   

5.
6.
7.
BackgroundTraditionally, microbial genome sequencing has been restrained to the species grown in pure culture. The development of culture-independent techniques over the last decade allows scientists to sequence microbial communities directly from environmental samples. Metagenomics is the study of complex genome by the isolation of DNA of the whole community. Next generation sequencing (NGS) of metagenomic DNA gives information about the microbial and taxonomical characterization of a particular niche. The objective of the present research is to study the microbial and taxonomical characterization of the metagenomic DNA, isolated from the frozen soil sample of a glacier in the north western Himalayas through NGS.ResultsThe glacier community comprised of 16 phyla with the representation of members belonging to Proteobacteria and Acidobacteria. The number of genes annotated through the Kyoto Encyclopedia of Genes and Genomes (KEGG), GO, Pfam, Clusters of Orthologous Groups of proteins (COGs), and FIG databases were generated by COGNIZER. The annotation of genes assigned in each group from the metagenomics data through COG database and the number of genes annotated in different pathways through KEGG database were reported.ConclusionResults indicate that the glacier soil taken in the present study, harbors taxonomically and metabolically diverse communities. The major bacterial group present in the niche is Proteobacteria followed by Acidobacteria, and Actinobacteria, etc. Different genes were annotated through COG and KEGG databases that integrate genomic, chemical, and systemic functional information.How to cite: Gupta V, Singh I, Rasool S, et al. Next Generation sequencing and microbiome’s taxonomical characterization of frozen soil of North Western Himalayas of Jammu and Kashmir, India. Electron J Biotechnol 2020;45. https://doi.org/10.1016/j.ejbt.2020.03.003.  相似文献   

8.
9.
10.
11.
12.
BackgroundVibrio species display variable and plastic fitness strategies to survive and interact with multiple hosts, including marine aquaculture species that are severely affected by pathogenic Vibrios. The culturable Vibrio sp. strain ArtGut-C1, the focus of this study, provides new evidence of such phenotypic plasticity as it accumulates polyhydroxybutyrate (PHB), a biodegradable polymer with anti-pathogen activity, particularly in the marine larviculture phase. The strain was isolated from the gut of laboratory-reared Artemia individuals, the live diet and PHB carrier used in larviculture. Its main phenotypic properties, taxonomic status and genomic properties are reported based on the whole-genome sequencing.ResultsVibrio sp. ArtGut-C1 yielded 72.6% PHB of cells’ dry weight at 25°C. The genomic average nucleotide identity (ANI) shows it is closely related to V. diabolicus (ANI: 88.6%). Its genome contains 5,236,997-bp with 44.8% GC content, 3,710 protein-coding sequences, 96 RNA, 9 PHB genes functionally related to PHB metabolic pathways, and several genes linked to competing and colonizing abilities.ConclusionsThis culturable PHB-accumulating Vibrio strain shows high genomic and phenotypic variability. It may be used as a natural pathogen biocontrol in the marine hatchery and as a potential cell factory for PHB production.How to cite: Yévenes M, Quiroz M, Maruyama F, et al. Vibrio sp. ArtGut-C1, a polyhydroxybutyrate producer isolated from the gut of the aquaculture live diet Artemia (Crustacea). Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.10.003  相似文献   

13.
14.
BackgroundPlant tissue cultures have the potential to reprogram the development of microspores from normal gametophytic to sporophytic pathway resulting in the formation of androgenic embryos. The efficiency of this process depends on the genotype, media composition and external conditions. However, this process frequently results in the regeneration of albino instead of green plants. Successful regeneration of green plants is affected by the concentration of copper sulfate (CuSO4) and silver nitrate (AgNO3) and the length of induction step. In this study, we aimed at concurrent optimization of these three factors in barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and triticale (x Triticosecale spp. Wittmack ex A. Camus 1927) using the Taguchi method. We evaluated uniform donor plants under varying experimental conditions of in vitro anther culture using the Taguchi approach, and verified the optimized conditions.ResultsOptimization of the regeneration conditions resulted in an increase in the number of green regenerants compared with the control. Statistic Taguchi method for optimization of the in vitro tissue culture plant regeneration via anther cultures allowed reduction of the number of experimental designs from 27 needed if full factorial analysis is used to 9. With the increase in the number of green regenerants, the number of spontaneous doubled haploids decreased. Moreover, in barley and triticale, the number of albino regenerants was reduced.ConclusionThe statistic Taguchi approach could be successfully used for various factors (here components of induction media, time of incubation on induction media) at a one time, that may impact on cereals anther cultures to improve the regeneration efficiency.How to cite: Orłowska R, Pachota KA, Machczyńska J, et al. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.11.001.  相似文献   

15.
BackgroundThe effects of dietary nutrition on tail fat deposition and the correlation between production performance and the Hh signaling pathway and OXCT1 were investigated in fat-tailed sheep. Tan sheep were fed different nutritional diets and the variances in tail length, width, thickness and tail weight as well as the mRNA expression of fat-related genes (C/EBPα, FAS, LPL, and HSL) were determined in the tail fat of sheep at three different growth stages based on their body weight. Furthermore, the correlations between tail phenotypes and the Hedgehog (Hh) signaling pathway components (IHH, PTCH1, SMO, and GLI1) and OXCT1 were investigated.ResultsC/EBPα, FAS, LPL, and HSL were expressed with differences in tail fat of sheep fed different nutritional diets at three different growth stages. The results of the two-way ANOVA showed the significant effect of nutrition, stage, and interaction on gene expression, except the between C/EBPα and growth stage. C/EBPα, FAS, and LPL were considerably correlated with the tail phenotypes. Furthermore, the results of the correlation analysis demonstrated a close relationship between the tail phenotypes and Hh signaling pathway and OXCT1.ConclusionsThe present study demonstrated the gene-level role of dietary nutrition in promoting tail fat deposition and related tail fat-related genes. It provides a molecular basis by which nutritional balance and tail fat formation can be investigated and additional genes can be identified. The findings of the present study may help improve the production efficiency of fat-tailed sheep and identify crucial genes associated with tail fat deposition.How to cite: Zeng J, Zhou S, Yang Y, et al. Effect of dietary nutrition on tail fat deposition and evaluation of tail-related genes in fat-tailed sheep. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.05.004.  相似文献   

16.
BackgroundThis paper presents micro- and nano-fabrication techniques for leachable realgar using the extremophilic bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) DLC-5.ResultsRealgar nanoparticles of size ranging from 120 nm to 200 nm were successfully prepared using the high-energy ball mill instrument. A. ferrooxidans DLC-5 was then used to bioleach the particles. The arsenic concentration in the bioleaching system was found to be increased significantly when compared with that in the sterile control. Furthermore, in the comparison with the bioleaching of raw realgar, nanoparticles could achieve the same effect with only one fifth of the consumption.ConclusionEmphasis was placed on improving the dissolvability of arsenic because of the great potential of leachable realgar drug delivery in both laboratory and industrial settings.How to cite: Xu R, Song P, Wang J, et al. Bioleaching of realgar nanoparticles using the extremophilic bacterium Acidithiobacillus ferrooxidans DLC. Electron J Biotechnol 2019;38. https://doi.org/10.1016/j.ejbt.2019.01.001.  相似文献   

17.
18.
BackgroundFermentation strategies for bioethanol production that use flocculating Saccharomyces cerevisiae yeast need to account for the mechanism by which inhibitory compounds, generated in the hydrolysis of lignocellulosic materials, are tolerated and detoxified by a yeast floc.ResultsDiffusion coefficients and first-order kinetic bioconversion rate coefficients were measured for three fermentation inhibitory compounds (furfural, hydroxymethylfurfural, and vanillin) in self-aggregated flocs of S. cerevisiae NRRL Y-265. Thièle-type moduli and internal effectiveness factors were obtained by simulating a simple steady-state spherical floc model.ConclusionsThe obtained values for the Thiéle moduli and internal effectiveness factors showed that the bioconversion rate of the inhibitory compounds is the dominant phenomenon over mass transfer inside the flocs.How to cite: Landaeta R, Acevedo F, Aroca G. Effective diffusion coefficients and bioconversion rates of inhibitory compounds in flocs of Saccharomyces cerevisiae. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.rjbt.2019.08.001  相似文献   

19.
BackgroundPyruvic acid (PA), a vital α-oxocarboxylic acid, plays an important role in energy and carbon metabolism. The oleaginous yeast Yarrowia lipolytica (Y. lipolytica) has considerable potential for the production of PA. An increased NaCl concentration reportedly increases the biomass and PA yield of Y. lipolytica.ResultsTo increase the yield of PA, the NaCl-tolerant Y. lipolytica A4 mutant was produced using the atmospheric and room temperature plasma method of mutation. The A4 mutant showed growth on medium containing 160 g/L NaCl. The PA yield of the A4 mutant reached 97.2 g/L at 120 h (0.795 g/g glycerol) in a 20-L fermenter with glycerol as the sole carbon source, which was 28.9% higher than that of the parental strain.ConclusionThe PA yield from Y. lipolytica can be improved by increasing its NaCl tolerance.How to cite: Yuan W, Lin X, Zhong S, et al. Enhanced pyruvic acid yield in an osmotic stress-resistant mutant of Yarrowia lipolytica. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.002.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号