首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power ofx tangential loads, is solved by the superposition principle and the trial-and-error methods.  相似文献   

2.
In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method.  相似文献   

3.
A closed-form out-of-plane dynamic displacement response of a curved track subjected to moving loads was pro- posed. The track structure was modeled as a planar curved Timoshenko beam periodically supported by the double-layer spring-damping elements. The general dynamic displacement response induced by the moving loads along the curve on the elastic semi-infinite space was firstly obtained in the frequency domain, according to the Duhamel integral and the dynamic reciprocity theorem. In the case of the periodic curved track structure subjected to moving loads, the dynamic displacement equation was simplified into a form of summation within the basic track cell instead of the integral. The transfer function for the curved track was expressed in the form of a transfer matrix. Single and series moving loads were involved in the calculation program. For the verification of the analytical model, the mid-span vertical deflection of a simply support curved beam subjected to moving load was recalculated and compared with the same case in the reference. The research results indicate that: under the same moving loads, the displacement response of the curved track decreases slightly with the increasing track radius, and the displacement response of the curved track with the radius greater than or equal to 600 m is almost equivalent to the displacement response of the straight track; the frequency spectrum of the curved track is more abundant than that of the straight track, which may result in more wheel-rail resonance and rail corrugation in the curved lines.  相似文献   

4.
Analytical solution for fixed-end beam subjected to uniform load   总被引:7,自引:0,他引:7  
A bi-harmonic stress function is constructed in this work. Ariy stress function methodology is used to obtain a set of analytical solutions for both ends fixed beams subjected to uniform load. The treatment for fixed-end boundary conditions is the same as that presented by Timoshenko and Goodier (1970). The solutions for propped cantilever beams and cantilever beams are also presented. All of the analytical plane-stress solutions can be obtained for a uniformly loaded isotropic beam with rectangular cross section under different types of classical boundary conditions.  相似文献   

5.
The free vibration and transient wave in a prestressed Rayleigh-Timoshenko beam subject to arbitrary transverse forces are analyzed by the newly developed method of reverberation-ray matrix (MRRM). The effects of shear deformation and rotational inertia are taken into consideration. With a Fourier transform technique, the general wave solutions with two sets of unknown amplitude coefficients are obtained in the transformed domain for an unbonded prestressed beam under the action of arbitrary external excitations. From the coupling at joints and the compatibility of displacements in each member, the free and forced vibration responses of a beam with various boundary conditions are finally evaluated through certain numerical algorithms, Results are presented for a simply-supported beam subject to either a point fixed load or moving load. Good agreement with the finite element method (FEM) is obtained. The present work is instructive for high-speed railway bridge design and structural health monitoring.  相似文献   

6.
Two numerical simulations were performed to investigate the protective effect of the foam cladding. One simulation is based on a previous experimental study, which is a ballistic pendulum with and without a foam cladding subjected to close-range blast loading. The other model is a steel beam with and without a foam cladding under blast loading. The overpressure due to the blast event can be calculated by the empirical function ConWep or by an arbitrary Lagrangian-Eulerian (ALE) coupling model. The first approach is relatively simple and widely used. The second approach can model the propagation of the blast wave in the air and the interaction between the air and the solid. It is found that the pendulum with the foam cladding always swings to a larger rotation angel compared to a bare pendulum. However, the steel beam with an appropriate foam cladding has a smaller deflection compared to the bare beam without a foam cladding. It is concluded that the protective effect of the foam cladding depends on the properties of the foam and the protected structure.  相似文献   

7.
Two numerical simulations were performed to investigate the protective effect of the foam cladding. One simulation is based on a previous experimental study, which is a ballistic pendulum with and without a foam cladding subjected to close-range blast loading. The other model is a steel beam with and without a foam cladding under blast loading. The overpressure due to the blast event can be calculated by the empirical function ConWep or by an arbitrary Lagrangian-Eulerian (ALE) coupling model. The first approach is relatively simple and widely used. The second approach can model the propagation of the blast wave in the air and the interaction between the air and the solid. It is found that the pendulum with the foam cladding always swings to a larger rotation angel compared to a bare pendulum. However, the steel beam with an appropriate foam cladding has a smaller deflection compared to the bare beam without a foam cladding. It is concluded that the protective effect of the foam cladding depends on the properties of the foam and the protected structure.  相似文献   

8.
Objective: There are no detailed reports of three-dimensional measurement of abutment teeth in mastication, because it is knotty to observe the rotation in chewing directly, and inexact to estimate indirectly. This work studies the three-dimensional stability of rigidly fixed bridge under the stresses of distributed loads and concentrated loads by optical method that gives the tip angle and rotation angle calculated directly based on measurement data. Methods: The specimen, taken from a 25-year-old male, was a left mandible without the second premolars and the first molars. As abutments, first premolar and second molar have complete periodontium. The specimen was soaked in formaldehyde solution. The bridge was fixed between two abutment teeth (first premolars and second molars), and the mandible was cemented in a steel box. The load was increased from 0 kg to 23 kg. Laser holographic technique was used to measure the three-dimensional bit shift of the dens, both buccolingual bit shift and mesiodistal bit shift, and determine tip angle and rotation angle. Results: The effects of stress distribution on the rigidly fixed bridge were evaluated, and stabilization of the bridge under the stresses of distributed loads and concentrated loads, respectively, were analyzed. The results showed that the tips of two abutments were very similar, and no distinct difference was observed between the distributed load and the concentrated load. However, the maximum rotation angle for the distributed load was two to four times as large as that for the concentrated load. In the experiment, the tip angle of the abutment teeth was no more than 0.65 degree, and the rotation angle was no more than 0.60 degree. All maximum angles occurred in the second molar. Conclusion: The fixed bridge is considered to be safe. In addition, a method for measuring the rotation angle was provided effectively.  相似文献   

9.
A bi-harmonic potential function was constructed in this study. Love solution was employed to obtain analytical solutions of uniformly loaded plates with two different types of clamped edges. The treatment of clamped boundary conditions was the same as that adopted by Timoshenko and Goodier (1970). The analytical solution for the first type of clamped boundary condition is identical with that obtained by Luo et al.(2004), and the solutions for both types were compared with the FEM results and the calculations of thin plate theory.  相似文献   

10.
A new style of hydraulic steel gate based on the principle of bionics is proposed in this paper. It has a fish-like shape and consists of right arches, invert arches, connection components and a face plate. It would be first applied in the project of Caoe River Sluice, used as both tidal barrage and flood gate. Compared with conventional hydraulic steel gate of beam grids, this new style of hydraulic steel gate can save up to 30%-50% of steel consumption. The dynamic behavior of the new gate under the impact load of tidal bore is investigated. The impact load of tidal bore is considered by a load spectrum obtained by field observation over a long period of time. Then a numerical analysis of the gate under the load spectrum is carried out by finite element method. The fluid-structure interaction is considered in the analysis. And a comparison between the response of the gate under the impact load and the response of the gate under the corresponding static load is conducted and indicates that the gate has a dynamic magnification factor of 1.2.  相似文献   

11.
The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated. We used the double Fourier transform and its inversion to solve the formulations of the problem. A closed form analytic solution of the beam was obtained by the theorem of residues. We selected a numerical example to illustrate the dynamic response of the beam on Pasternak and Winkler foundations, respectively. We discuss the effect of the moving load velocity on the dynamic displacement response of the beam. The maximum deflection of the beam increases slightly with increased load velocity but increases significantly with reduced shear modulus of subgrade at a given velocity. The maximum deflection of a beam resting on a Pasternak foundation is much smaller than that of a beam on a Winkler foundation.  相似文献   

12.
The effect of solute Cu and Cu precipitates on the wear behavior of ferritic iron under an unlubricated condition was investigated. The specific wear rate of Cu-containing steel abruptly decreased up to 50 N of load, and then gradually decreased with further increased load. The specific wear rate of the as-quenched specimen, in which Cu was in a solid solution, was the lowest among all the specimens at low loads, and all specimens had almost the same specific wear rate at high loads. Subsurface observation showed that the hardness increments of all specimens decreased with increased depth below the worn surface. The as-quenched specimen had a relatively large depth of deformed region than the other specimens even though the increments in hardness were almost the same for all specimens at low loads. With the same hardness at an unworn state, the as-quenched and over-aged specimens exhibited a substantial increase in hardness and large deformed regions below the worn surfaces. This finding indicated that the enhancement in plastic deformation and work hardening led to the decrease in the specific wear rate of the as-quenched specimen at low loads and the improvement in the wear resistance of all specimens at high loads.  相似文献   

13.
Experiments of silt rock subjected to coupling loads were carried out on tailormade equipment. With a constant dynamic load, the behaviors of eight sets of siltite specimens were investigated with different axial static loads. The experimental results show that the modulus of the specimens under coupling loads increases at first and then decreases with the increase of axial static pressure. The failure model of the specimens also varies. Keeping the dynamic load constant, when the axial static pressure is low, the specimen breaks in two simply. With the increase of axial static pressure, the cone-shaped fragment appeares. When the axial static pressure reaches 90% of the static strength of rock, the specimen smashes into amount of small fragments.  相似文献   

14.
To study the bending strength of mass concrete under dynamic loading, the pure bending zone of three-graded concrete beam is considered as a three-phase composite composed of matrix, aggregate and interface between them on meso-level. Dynamic constitutive model considering strain-rate strengthening effect and damage softening effect is adopted to describe the cocrete and meso-element's damage. The failure mechanisms of beam under impact loading, triagle wave load, dynamic load coupling with initial static loading were simulated by using displacement-controlled FEM. Furthermore, stress-strain curve of the specimens and their dynamic bending strength were obtained. The results obtained from numerical simulation agreed well with experimental data.  相似文献   

15.
Failure Modes for Single-Layer Reticulated Domes Under Impact Loads   总被引:5,自引:0,他引:5  
The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and adapts to solve non-linear dynamic problem. And it introduces the ANSYS/LS-DYNA which is the popular FE software for impact problem both at home and abroad. Then it gives solutions for one simple model by analytical method and ANSYS/LS-DYNA respec-tively to validate function of software, and they are consistent. Afterward, it gives model of single-layer Kiewitt reticulated dome with a span of 60 m, and the cylinder impactor, and introduces the contact interface arithmetic, especially the material model of steel (piecewise linear plasticity model) which takes stain rate into account and makes steel failure stress higher under impact loads. The vertical displacement, stress in main members, and the plastic deformation for dome under impact loads were obtained. Then four failure modes (no failure, moderate failure, global failure and slight failure) were summarized according to the rules of dynamic response. And the characteristics of dynamic response for each failure mode were shown.  相似文献   

16.
Bridge piers are impacted by autos sometimes. The pier usually has not been destroyed after once impact by auto. But there are few research on damage which will affect pier's capability, and most relative studies have focused the problems on piers impacted by vessels. The methods involve mainly sutra experience theory, numerical analysis, and experimental method. Owing to the complicacy of the bridge pier impacted by a vessel, there are few research derived with the sutra mechanics model and the piers impacted by autos. The dynamic response is studied here under the assumption of the rigid-plastic small-deformation for the pier impacted by auto. According to the Parkes beam model, the rigid-plastic theoretical solution is deduced. The final deformation is calculated by a practical example for the pier impacted by auto.  相似文献   

17.
The paper presents a new solution of inverse displacement analysis of the general six degree-of-freedom serial robot. The inverse displacement analysis of the general serial robot is transformed into a minimization problem and then the optimization method is adopted to solve the nonlinear least squares problem with the analytic form of new Jacobian matrix. In this way, joint variables of the general serial robot can be searched out quickly under the desired precision when positions of the three non-collinear end effector points are given. Compared with the general Newton iterative method, the proposed algorithm can search out the solution when the robot is at the singular configuration and the initial configuration used in the optimization method may also be the singular configuration. So the convergence domain is bigger than that of the general Newton iterative method. Another advantage of the proposed algorithm is that positions of the three non-collinear end effector points are usually much easier to be measured than the orientation of the end effector. The inverse displacement analysis of the general 6R (six-revolute-joint) serial robot is illustrated as an example and the simulation results verify the efficiency of the proposed algorithm. Because the three non-collinear points can be selected at random, the method can be applied to any other types of serial robots.  相似文献   

18.
Based on phase-plane orbit analysis, the mathematical model of piecewise-smooth systems of multidegree-of-freedom under the mode coordinate is established. Approximate analytical solution under the physical coordinate of multi-degree-of-freedom self-excited vibration induced by dry friction of piecewise-smooth nonlinear systems is derived by means of average method, the results of which agree with those of the numerical solution. An effective and reliable analytical method investigating piecewise-smooth nonlinear systems of multi-degree-of-freedom has been given. Furthermore, this paper qualitatively analyses the curves about stationary amplitude versus rubbing velocity of hands and versus natural frequency of hands, and about angular frequency versus rubbing velocity of hands. The results provide a theoretical basis for identifying parameters of the system and the analysis of steady region.  相似文献   

19.
The loads of shock wave effect on fabricated anti-blast wall and distribution law around the wall were investigated by using near surface explosion test method and FEM. The pressure-time histories and variety law on the foreside and backside of the anti-blast wall were adopted in the tests of variety of different explosion distances and dynamites, as well as in the comparison between the test and numeri-cal calculation. The test results show that the loads of shock wave effect on the anti-blast wall were es-sen-tially consistent with calculation results using criterion under surface explosion when explosion dis-tances exceed 2 m, the distribution of overpressure behind wall was gained according to variety law based on small-large-small. It is also demonstrated that the peak overpressure behind wall had com-monly appeared in wall height by 1.5—2.5 multiples, and the peak overpressures of protective building behind wall could be reduced effectively by using the fabricated anti-blast wall.  相似文献   

20.
Terrorist attacks using improvised explosive devices (IED) can result in unreinforced ma-sonry (URM) wall collapse. Protecting URM wall from IED attack is very complicated. An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy. However, mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world. In this paper, numerical models are used to simulate the per-formance of aluminum foam protected URM walls subjected to blast loads. A distinctive model, in which mortar and brick units of masonry are discritized individually, is used to model the perform-ance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model. The aluminum foam is modelled by a nonlinear elas-toplastic material model. The material models for masonry, aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads. Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号