首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

2.
本刊86年第3期《二次曲线中点弦方程和弦中点的轨迹方程》一文例3“过点P(0,1)作直线与抛物线y~2=x相交,求被抛物线截得的弦的中点的轨迹的方程”的答案中说轨迹是抛物线(y-1/2)~2=1/2(x 1/2)位于已知抛物线y~2=x内且在x轴下方的那一段  相似文献   

3.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

4.
引例1设F1,F2是椭圆C:x2/a2+y2/b2=1(a>b>0)的左右焦点,A,B分别为其左顶点和上顶点,△BF1F2是面积为31/3的正三角形,(1)求椭圆C的方程;(2)过右焦点F2的直线l交椭圆于M,N两点,直线AM,AN分别与已知直线x=4交于P,Q两点,试探究以线段PQ为直径的圆与直线l的位置关系,  相似文献   

5.
<正>1考题呈现题1(2018年高考全国数学卷Ι理19题)设椭圆C:x2/2+y2/2+y2=1的右焦点为F,过点F的直线l与C相交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.题2(2018年高考全国数学卷Ι文20题)设抛物线C:y2=1的右焦点为F,过点F的直线l与C相交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.题2(2018年高考全国数学卷Ι文20题)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线  相似文献   

6.
错在哪里     
数学抛物线的顶点在原点,对称轴为y轴,它与圆x2 y2=9相交,公共弦MN的长为2(5~(1/2)),求该抛物线的方程.错解:设抛物线的方程为x2=2py(P∈R),M(x1,y1),N(x2,y2).  相似文献   

7.
题:过点M(一2,0)的直线Z依次与抛物线,乞=一4二及圆(.x+9/2)2+,:== 16相交于A、B、C、D,已知】AB】=】CD】,求直线l的方程。解设直线l的方程为夕=k(二+2)(k今。),恤 气g=k(戈+2)夕2==一4戈得k’戈’+(4k’+4)x+4k2==0…①rJIL如 去 由消则l与抛物线的两个交点连线的中点横坐标为·。=一世沪由{澎;忿卿,2=16圆被l所截得的弦的中点重合。上述解法即是这种情况。 (2)当直线l与两曲线相交顺序为抛物线、圆、抛物线、圆时(图中的l‘、l。),这时圆与抛物线被i所截得的弦的中点不爪合,但可由}A川二}CD!知两弦长相等。 设l与抛物线两个交点的…  相似文献   

8.
一、与向量、方程、函数知识点的交汇例1,若抛物线C:y2=4x,F是抛物线C的焦点,过F的直线l与抛物线C相交于A、B两点,l的斜率为1,求OA,OB的夹角.解:∵F(1,0),l的斜率Kl=1,∴l的方程为:y=x-1.设A(x1,y1),B(x2,y2),l与C相交将l:y=x-1代入C:y2=4x中得:x2-6x+1=0,x1,x2为其两根,则x1+x2=6,x1·x2=1,  相似文献   

9.
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".一、以定点为中点的弦所在直线的方程例1过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.  相似文献   

10.
1.函数与方程的思想例1过点P(-31/2,0)作直线l与椭圆(x2/4)+(y2/3)=1相交于A、B两点,O为坐标原点,求△OAB的面积的最大值.分析设l:x=my-31/2,代入椭圆方程消去x,得(3m2+4)y2-6 31/2my-3=0.  相似文献   

11.
<正>一、问题呈现试题1 (2018年全国高考题)设抛物线y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M、N两点.(1)当与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.试题2 (2018年全国高考题)设椭圆C:  相似文献   

12.
<正>文[1]给出了椭圆及双曲线平行弦的若干性质,阅读之后,受到启发,笔者经探究后发现了抛物线平行弦的三条性质,现与读者分享.如图1,过抛物线y2=2px(p>0)的对称轴上任意一点A(m,0)(m≠0)作倾斜角为θ的直线AM交抛物线于M,N两点,又过抛物线顶点O的弦OP∥AM,则性质 1 ■.  相似文献   

13.
引题(2012年高考福建卷·理19)如图,椭圆E:x2/a2+y2/b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=1/2·过F1的直线交椭圆于A,B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l:y=kx+m与椭圆E有且仅有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,  相似文献   

14.
<正>1 试题呈现已知抛物线C:y2=4x的焦点为F,直线y=x-2与抛物线C交于A,B两点.(1)求△FAB的面积;(2)过抛物线C上一点P作圆M:(x-3)2+y2=4的两条斜率都存在的切线分别与抛物线C交于异于点P的两点D,E.证明:直线DE与圆M相切.本题是典型的抛物线多动点问题,结合直线与圆的位置关系进行考查,对学生逻辑推理能力和数学运算能力有较高的要求.直线与圆锥曲线综合问题,常规方法是联立直线与曲线方程,  相似文献   

15.
<正>在平面几何中,我们有著名的蝴蝶定理(Butterfly theorem):设F是圆内弦PQ的中点,过点F作弦AB和CD,设AD和BC各相交PQ于点M,N,则F是MN的中点.笔者通过对蝴蝶定理的解读,尝试将其在抛物线中类比探索研究,得到:结论如图1,过抛物线x2=4my(m>0)的焦点F任意作两条弦分别与抛物线交于点A,B,C,D,连结AC,BD交直线y=m于M,N两点,则M,N关于点F对称.  相似文献   

16.
<正>学生的思维往往具有一定的局限性,不能够更加全面地分析问题,为培养思维的全面性和发散性,可以进行"一题多解"训练。下面以直线和圆相交的一道习题为例,谈谈"一题多解"的学习实践。例已知圆C:x2+y2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使以l被圆截得的弦AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由。解法1:由圆C:x2-2x+4y-4=0,是否存在斜率为1的直线l,使以l被圆截得的弦AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由。解法1:由圆C:x2+y2+y2-2x+4y-4=0  相似文献   

17.
题目 过抛物线y^2=2px(P〉0)的顶点O作互相垂直的弦OA、OB,交抛物线于点A、B. (1)求弦AB中点P的轨迹方程; (2)证明直线AB与x轴交于定点M; (3)过点O作直线AB的垂线,垂足为H,求H点的轨迹方程.  相似文献   

18.
2012年全国高考数学福建卷文、理科解析几何试题分别是: 试题1 ,等边△OAB的边长为8√3,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点.  相似文献   

19.
王鹍  陈安心 《高中生》2011,(6):8-10
中点弦问题例1已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率e=31/2/2,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程.(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-a,0),点Q(0,y0)在线段AB的垂直平分线上,且(?)·(?)=4,求y0的值.  相似文献   

20.
1问题的提出试题已知椭圆C:x2+4y2=16,过点P(2,1)作一直线l交椭圆C于A,B两点,若点P为交点弦AB的中点,求直线l的方程.这是一道我校"圆锥曲线与方程"一章阶段测试的试题,讲评试题时笔者采用的是"点差法"与"设而不求"两种常规方法,课后有一位同学提出教辅材料中介绍的一种简解方法如下:将点P(2,1)代入椭圆的切线方程x0x+4y0y=k,得2x+4y=k,点P(2,1)在此直线上得k=8,则直线l的方程为2x+4y=8即  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号