首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
This paper investigates the consensus of fractional-order multiagent systems via sampled-data event-triggered control. Firstly, an event-triggered algorithm is defined using sampled states. Thus, Zeno behaviors can be naturally avoided. Then, a distributed control protocol is proposed to ensure the consensus of fractional-order multiagent systems, where each agent updates its current state based on its neighbors’ states at event-triggered instants. Furthermore, the pinning control technology is taken into account to ensure all agents in multiagent systems reach the specified reference state. With the aid of linear matrix inequalities (LMI), some sufficient conditions are obtained to guarantee the consensus of fractional-order multiagent system. Finally, numerical simulations are presented to demonstrate the theoretical analysis.  相似文献   

2.
This paper investigates group consensus for leaderless multi-agent systems with non-identical dynamics. The consensus protocol is put forward in the form of the distributed event-triggered control subject to saturation, which depends on information from neighboring agents at event-triggered instants. In order to exclude the Zeno behavior and save resources, the given event-triggered condition is detected only at discrete sampling times, where the sampling intervals can be variable. Based on the graph theory, Lyapunov–Krasovskii functional method and by adopting the free-weighting matrix technique, some sufficient group consensus criteria in terms of linear matrix inequalities are derived. Furthermore, optimization problems aiming at maximizing the event-triggered parameter and the consensus region are proposed. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

3.
This paper considers the event-triggered leaderless and leader-following consensus problems for linear multi-agent systems. By introducing event-triggered estimators, two novel control schemes are proposed. Different from the existing event-triggered controllers, which rely on the Fiedler eigenvalue of Laplacian matrix, the developed controllers only use the information from neighboring agents. Meanwhile, the adaptive trigger parameters are designed in the event-triggered mechanisms to improve the self-regulation ability of the event-triggered estimators. In addition, the leaderless consensus and the leader-following consensus can be achieved under the corresponding control protocols. Finally, two simulation examples are given to illustrate the validity of the proposed control protocols.  相似文献   

4.
This paper investigates the event-based consensus problems for linear multi-agent systems under directed network topology. First, a new event-triggered control method is proposed for the leader-following consensus problem of agents under directed graphs. Then this new method is applied to the cluster control problem under special topological conditions. The new event-based control scheme is better than some existing literature in the following aspects. 1) The graph only needs to contain a spanning tree instead of being required to be strongly connected graph or undirected, and the triggering function is state-dependent rather than time-dependent. 2) Some parameters are designable for the trade-off between the event interval and the performance of the controlled system. Besides, the optimization of some parameters is studied to reduce the trigger frequency. All the agents can achieve consensus with an exponential speed when communications among follower agents are intermittent, and Zeno behavior is excluded under the proposed method. 3) When applying this method to the cluster control problem, agents in the same cluster share the same form of triggering function. Cluster consensus can be achieved regardless of intra- and inter-cluster relative coupling strength under the event-triggered control framework.  相似文献   

5.
This paper investigates globally bounded consensus of leader-following multi-agent systems with unknown nonlinear dynamics and external disturbance via adaptive event-triggered fuzzy control. Different from existing works where filtering and backstepping techniques are applied to design controllers and event-triggered conditions, a matrix inequality is established to obtain the feedback gain matrix and event-triggered functions. To save communication resources, a new distributed event-triggered controller with fully discontinuous communication among following agents is designed. Meanwhile, a strictly positive minimum of inter-event time is provided to exclude Zeno behavior. Furthermore, to achieve globally bounded leader-following consensus, an adaptive fuzzy approximator and a parameter estimator are designed to approximate the unknown nonlinear dynamics and parameters, respectively. Finally, the effectiveness of the proposed method is validated via a simulation example.  相似文献   

6.
This paper considers the consensus disturbance rejection problem of networks of linear agents with event-triggered communications in the presence of matched disturbances. Based on the disturbance observer, distributed event-based consensus protocols are proposed and constructed for both the cases of neutrally stable and general linear agents. Under the proposed event-based consensus protocol, it is shown that the consensus errors are asymptotically stable and the Zeno behavior can be excluded. Compared to the previous related works, our main contribution is that the proposed event-based protocol can achieve consensus and meanwhile reject disturbance, without the need of continuous communications among neighboring agents. For the case of neutrally stable agents, the event-based protocol is fully distributed, using only the local information of each agent and its neighbors. Simulation results are presented to illustrate the effectiveness of the theoretical results.  相似文献   

7.
The consensus problem for a multi-agent system (MAS) is investigated in this paper via a sliding mode control mechanism subject to stochastic DoS attack, which may occur on each transmission channel independently and randomly according to the Bernoulli distribution. A distributed dynamic event-triggered strategy is implemented on the communication path among agents, where dynamic parameters are introduced to adjust the threshold of event-triggered condition. After that, a distributed sliding mode controller is proposed for ensuring the stochastic consensus of the MAS. Meantime, a minimization problem is solved to obtain the correct controller gain matrix. At last, a numerical example is shown to demonstrate the presented results.  相似文献   

8.
The consensus problem for a multi-agent system (MAS) is investigated in this paper via a sliding mode control mechanism subject to stochastic DoS attack, which may occur on each transmission channel independently and randomly according to the Bernoulli distribution. A distributed dynamic event-triggered strategy is implemented on the communication path among agents, where dynamic parameters are introduced to adjust the threshold of event-triggered condition. After that, a distributed sliding mode controller is proposed for ensuring the stochastic consensus of the MAS. Meantime, a minimization problem is solved to obtain the correct controller gain matrix. At last, a numerical example is shown to demonstrate the presented results.  相似文献   

9.
An event-triggered leader-following consensus problem for multi-agent systems with nonlinear dynamics was investigated in this study. The interaction topologies among the agents that we considered are randomly switched ones, governed by a semi-Markov process with partially unknown rates. By building the state error model between the leader and followers, the consensus problem is first converted into a stability problem. Moreover, an event-triggered transmission scheme based on sampling data was proposed to reduce communication redundancy. The consensus controller and event-triggered parameters can be designed effectively. By constructing a Lyapunov–Krasovskii functional (LKF) with a triple integral, the sufficient conditions required to guarantee the event-triggered consensus can be reached with respect to the linear matrix inequalities (LMIs). Ultimately, the validity of the theoretical results is demonstrated by a numerical example.  相似文献   

10.
The paper investigates the consensus problem for multi-agent systems with randomly occurring nonlinear dynamics and time-varying delay. A novel event-triggered scheme has been proposed, which can lead to a significant reduction in information communication in a network. By utilizing stochastic analysis and properties of the Kronecker product, consensus criteria are derived in the form of linear matrix inequalities, which can be readily solved using the standard numerical software. Finally, an illustrative example is used to show the effectiveness of the event-triggered scheme.  相似文献   

11.
In this paper, we mainly investigate the finite-time consensus problem of general linear multi-agent systems. The paper proposed a suitable event-triggered control strategy. The strategy has some desirable properties including: distributed, independent, and asynchronous. It is theoretical demonstrated that the multi-agent system can achieve consensus in a certain time regardless of the initial condition under this event-triggered control scheme. In addition, without finding singular triggering problem, we prove the feasibility of this proposed event-triggered control protocol. Finally, we put forward some simulation graphs for the sake of showing the availability of our conclusions.  相似文献   

12.
In this paper, the leader-following consensus problem of general linear multi-agent systems without direct access to real-time state is investigated. A novel observer-based event-triggered tracking consensus control scheme is proposed. In the control scheme, a distributed observer is designed to estimate the relative full states, which are used in tracking consensus protocol to achieve overall consensus. And an event-triggered mechanism with estimated state-dependent event condition is adopted to update the control signals so as to reduce unnecessary data communication. Based on the Lyapunov theorem and graph theory, the proposed event-triggered control scheme is proved to implement the tracking consensus when real-time state cannot direct obtain. Moreover, such scheme can exclude Zeno-behavior. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

13.
This study discusses the finite-time consensus for the second-order leader-following nonlinear multi-agent system with event-triggered communication. An event-triggered control protocol is established to achieve finite-time consensus, which can effectively avoid the Zeno behavior. Due to the unevenness of an event-triggered controller and the occurrence of the event-triggered condition, it is more challenging to analyze the event-triggered finite-time consensus. Based on the knowledge of graph theory, all agents can achieve finite-time consensus via the proposed event-triggered control protocol. Different from homogeneity, a Lyapunov function is constructed to obtain the settling time. Finally, a simulation example illustrates the validity of the main results.  相似文献   

14.
We address the leader-following tracking consensus issue for a class of linear multi-agent systems (MASs) via dynamic event-triggered (DET) approaches in this paper. The DET communication mechanism is introduced by an additional internal dynamic variable, and is developed to schedule agents’ data transmission. State observers are also employed to tackle the scenario wherein inner information of follower agents are not available for measurement. And then, state-based and observer-based distributed control proposals are proposed on the basis of dynamic event-triggered mechanism (DETM), respectively. To avoid continuous measurement information monitor, we present a technical approach for generation of the combinational information from their own neighboring agents only at event instants. The stabilities of the resulting closed-loop systems, both state-feedback one and output-feedback one, are rigorously analyzed in theory, and it is proven that all signals in the closed-loop system are bounded and Zeno behavior is also excluded. Simulation examples are presented to illustrate the theoretical claims.  相似文献   

15.
This work is concerned with the problem of reachable set synthesis for a class of singular systems with time-varying delay via the adaptive event-triggered scheme. Compared with the static event-triggered mechanism, the adaptive event-triggered mechanism can save the communication resources more effectively. By virtue of Lyapunov stability theory, sufficient conditions are given to guarantee the stability of the closed-loop system and that the reachable set of the resulting system is bounded by the obtained ellipsoid. In addition, by using linear matrix inequality technique and free-weighting matrix method, the weighting matrix of event-triggered condition and proportional-derivative (P-D) feedback controller gains are obtained. The effectiveness and superiority of the developed control approach are substantiated by a numerical example and two practical examples.  相似文献   

16.
This paper is devoted to the dynamic event-triggered consensus problem of general linear multi-agent systems under fixed and switching directed topologies. Two distributed dynamic event-triggered strategies, where internal dynamic variables are involved, are introduced for each agent to achieve consensus asymptotically. Compared with the existing static triggering strategies, the purposed dynamic triggering strategies result in larger inter-execution times and less communication energy among agents. In addition, neither controller updates nor triggering threshold detections require continuous communication in the purposed control strategies. It is also proven that the Zeno behavior is strictly ruled out under fixed and switching directed topologies. Finally, the effectiveness of the theoretical analysis is demonstrated by numerical simulations.  相似文献   

17.
This paper is concerned with event-triggered secure consensus for a class of linear multi-agent systems (MASs) under denial-of-service (DoS) attacks. Different from some existing methods, a multi-sensor multi-rate (MSMR) sampling mechanism is introduced to sample system states of agents. A class of multi-rate observer is devised to deal with some problems involved, such as the asynchrony and the incompleteness of several state sub-vectors, caused by the MSMR sampling mechanism. By using the partially updated state information of each agent, a novel multi-rate event-triggered mechanism is proposed, in which the continuous monitoring of the combined measurement information is avoided. Then, an event-based distributed secure consensus control protocol is presented against DoS attacks for the MAS under a directed communication topology. By taking into account the information on the duration and frequency of the DoS attacks, a sufficient condition is established to design suitable control protocols such that consensus can be achieved. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

18.
In this paper, the fully distributed consensus for a class of multiple Euler-Lagrange systems is investigated, where the protocol is designed under the event-triggered control framework and the dynamics of Euler-Lagrange systems are heterogeneous. Since only local information interactions at triggered instants can be used and the Euler-Lagrange systems are of relatively complex dynamics, it is challenging to achieve asymptotic consensus without using any global information (such as the Laplacian matrix information). By skillfully integrating the adaptive control, distributed control and event-triggered control techniques, a novel protocol is proposed for the investigated multiple Euler-Lagrange systems. It is proven that the asymptotic consensus can be achieved by the developed protocol. By a numerical example, the effectiveness of the developed protocol is illustrated.  相似文献   

19.
This paper mainly investigates the event-triggered tracking control for couple-group multi-agent systems in a disturbance environment, where the topology of the agents is switching. Consensus protocol is designed for the case that some agents reach a consistent value, while the other agents reach another consistent value. Then, event-triggered control laws are designed to reduce the frequency of individual actuation updating for discrete-time agent dynamics. Moreover, by applying the Lyapunov function method, a sufficient condition of couple-group consensus is established in terms of a matrix inequality when the communication topology is switching. Finally, simulation examples are given to demonstrate the effectiveness of the proposed methods.  相似文献   

20.
In this work, a lifted event-triggered iterative learning control (lifted ETILC) is proposed aiming for addressing all the key issues of heterogeneous dynamics, switching topologies, limited resources, and model-dependence in the consensus of nonlinear multi-agent systems (MASs). First, we establish a linear data model for describing the I/O relationships of the heterogeneous nonlinear agents as a linear parametric form to make the non-affine structural MAS affine with respect to the control input. Both the heterogeneous dynamics and uncertainties of the agents are included in the parameters of the linear data model, which are then estimated through an iterative projection algorithm. On this basis, a lifted event-triggered learning consensus is proposed with an event-triggering condition derived through a Lyapunov function. In this work, no threshold condition but the event-triggering condition is used which plays a key role in guaranteeing both the stability and the iterative convergence of the proposed lifted ETILC. The proposed method can reduce the number of control actions significantly in batches while guaranteeing the iterative convergence of tracking error. Both rigorous analysis and simulations are provided and confirm the validity of the lifted ETILC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号