首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
This paper investigates the input-to-state stabilizing (ISS) problem for Takagi–Sugeno (T–S) fuzzy systems with multiple transmission channels under denial-of-service (DoS) attacks. To achieve ISS, time-triggered data update logics on different channels are determined by linear matrix inequalities (LMIs). Under DoS attacks, a switched fuzzy dynamic output feedback controller which takes the security of premise variables into consideration is constructed. A novel time division mechanism is proposed to deal with the uncertainties caused by DoS attacks at different time periods. The proposed mechanism considers all cases of DoS attacks, which is more general compared to the existing method. Then, sufficient conditions are given to ensure the ISS of T–S fuzzy systems under DoS attacks. Finally, two examples are given to illustrate the effectiveness and merits of the proposed method.  相似文献   

2.
This article investigates the defense control problem for sampled-data Takagi-Sugeno (T-S) fuzzy systems with multiple transmission channels against asynchronous denial-of-service (DoS) attacks. Firstly, a new switching security control method is proposed to tolerate the asynchronous DoS attacks that act independently on each channel. Then, based on switching strategy, the resulting augmented sampled-data system can be converted into new switched systems including several stable subsystems and one open-loop subsystem. Besides, by applying the piecewise Lyapunov-Krasovskii (L-K) function method, membership functions (MFs) dependent sufficient conditions are derived to ensure the exponential stability of newly constructed switching systems. Moreover, quantitative relations among the sampling period, the exponential decay rate, and the rate of all channels being fully attacked and not being completely attacked are established. Finally, simulation examples show the effectiveness of the developed defense control approach.  相似文献   

3.
This paper investigates the problem of resilient control for cyber-physical systems (CPSs) described by T-S fuzzy models. In the presence of denial-of-service (DoS) attacks, information transmission over the communication network is prevented. Under this circumstance, the traditional control schemes which are proposed based on perfect measurements will be infeasible. To overcome this difficulty, with the utilization of an equivalent switching control method, a novel gain-switched observer-based resilient control scheme is proposed. According to whether the DoS attack is activated, two different controller synthesis conditions are given by combining the information of the tolerable DoS attacks. In addition, a quantitative relationship between the resilience against DoS attacks and the obtained disturbance attenuation level is revealed, which is helpful for balancing the tradeoff between the abilities to tolerate DoS attacks and attenuate the influence of external disturbance. Finally, simulation results are provided to verify the effectiveness of the proposed switching control scheme.  相似文献   

4.
This paper is concerned with the security control problem of the networked control system (NCSs) subjected to denial of service (DoS) attacks. In order to guarantee the security performance, this paper treats the influence of packet dropouts due to DoS attacks as a uncertainty of triggering condition. Firstly, a novel resilient triggering strategy by considering the uncertainty of triggering condition caused by DoS attacks is proposed. Secondly, the event-based security controller under the resilient triggering strategy is designed while the DoS-based security performance is preserved. At last, the simulation results show that the proposed resilient triggering strategy is resilient to DoS attacks while guaranteing the security performance.  相似文献   

5.
This paper studies the event-triggered control for discrete-time switched systems under the influence of denial-of-service (DoS) attacks and output quantization. Firstly, the switching is assumed to be slow enough in the sense of average dwell time, and DoS attacks are assumed to be energy-limited by constraining DoS frequency and DoS duration. Secondly, by designing an event-triggered mechanism which integrates switching, DoS attacks and transmission error, the initial state bound is obtained at a finite time. Then, a novel quantization coding method is designed by introducing a monotonically increasing sequence, which guarantees the unsaturation of the quantizer. On the basis of this, the exponential convergence and Lyapounov stability of the closed-loop system are established. Finally, two-tanks system is illustrated to demonstrate the effectiveness of the theoretical analysis.  相似文献   

6.
This paper investigates the observer-based consensus control for high-order nonlinear multi-agent systems (MASs) under denial-of-service (DoS) attacks. When the DoS attacks appear, the communication channels are destroyed, and the blocked information may ruin the consensus of MASs. A switched state observer is designed for the followers to observe the leader’s state whether the DoS attacks occur or not. Then, a dynamic event-triggered condition is proposed to reduce the consumption of communication resources. Moreover, an observer-based and dynamic event-triggered controller is formulated to achieve leader-following consensus through the back-stepping method. Additionally, the boundedness of all closed-loop signals is obtained based on the Lyapunov stability theory. Finally, the simulation results demonstrate the effectiveness of the presented control strategy under DoS attacks.  相似文献   

7.
In this study, a dynamic event-triggered control problem is addressed for nonlinear networked control systems (NCSs) subject to denial-of-service (DoS) attacks. Assume that data from the plant to the controller is transmitted via a wireless transmission channel under malicious DoS attacks characterized by frequency and duration properties. On the premise of ensuring the stability and minimum inter-event time (MIET) of the systems, dynamic event-triggered mechanisms (DETMs) are proposed for the hybrid dynamic system to withstand a certain degree of DoS attacks. Three event-triggered schemes are designed for the most existing state-based control systems which further enlarge the inter-event times, and the stabilization conditions of hybrid dynamic system are given. Finally, illustrative examples are provided to verify the effectiveness of the presented theoretical results.  相似文献   

8.
In this paper, the secure synchronization control problem of a class of complex time-delay dynamic networks (CTDDNs) under denial of service (DoS) attacks is studied. Based on the pinning control strategy, a non-fragile sampling controller is designed for a small number of nodes in the complex network. It can effectively solve the problem of limited communication resources and has good anti-interference performance. In order to resist the influence of DoS attacks, an improved comparator algorithm is designed to obtain the specific information of DoS attacks, including the upper and lower bounds of the DoS attacks duration, the DoS attacks frequency and the specific active/sleeping interval of DoS attacks. Based on Lyapunov stability theory and by designing the pinning non-fragile sampling controller, new security synchronization criteria are established for CTDDNs. Finally, two numerical examples are given to verify the validity of the theories.  相似文献   

9.
In this paper, the problem of observer-based model predictive control (MPC) for a multi-channel cyber-physical system (CPS) with uncertainties and hybrid attacks is investigated via interval type-2 Takagi-Sugeno (IT2 T-S) fuzzy model. Both denial-of-service (DoS) and false data injection (FDI) attacks are studied due to the vulnerability of wireless transmission channels. The objective of the addressed problem is to improve the security performance of the multi-channel CPS under malicious attacks, which has not been adequately investigated in the existing MPC algorithms. Moreover, uncertainties which appear not only in the membership functions but in both state and input matrices are considered. In this paper, different from the method that FDI attacks are handled by the bounded functions, an off-line observer is designed to actively defend against the FDI attacks. Meanwhile, an on-line MPC optimization algorithm, which minimizes the upper bound of objective function respecting input constraints, is presented to obtain the secure controller gains. Finally, an illustrative example is provided to verify the effectiveness and superiority of presented approach.  相似文献   

10.
This paper studies the fault-tolerant model-free adaptive control (FT-MFAC) problem for a class of single-input single-output (SISO) nonlinear networked control systems (NCSs) under denial-of-service (DoS) attacks. A novel FT-MFAC framework is established with the consideration of DoS attacks and the sensor fault, in which DoS attacks obeying the Bernoulli distribution randomly happen in the sensor-to-controller channel and the sensor fault is approximated by the radial basis function neural network (RBFNN). Based on the proposed framework, an FT-MFAC algorithm that uses only input/output data is proposed to guarantee that the output tracking error is bounded in the sense of mean square. Finally, the effectiveness of the proposed algorithm is illustrated by a simulation.  相似文献   

11.
In this paper, the dynamic event-based resilient consensus control of the multiple networked Euler-Lagrangian (E-L) systems under the Denial of Service (DoS) attacks is considered. Compared with linear cyber-physical systems, nonlinear networked E-L systems are more complex and closer to actual mechanical systems. For the situation where the topology is a strongly connected directed topology, a controller based on a dynamic event-trigger mechanism is designed to achieve consensus control for the networked E-L system in the absence of DoS attacks. Sufficient conditions are presented, which can guarantee the closed-loop system be stable. Then the resilient consensus problem of event-based controllers under energy-constrained DoS attacks is analyzed. The conditions related to the duration and frequency of DoS attacks are given. Zeno behavior is proved does not exist in the proposed control scheme. Finally, some numerical simulation results are given for verifying the theoretical results.  相似文献   

12.
This paper investigates the event-based asynchronous finite-time control for a class of cyber-physical switched systems under Denial-of-Service (DoS) attacks. Considering the attack’s characteristics, we put forward a novel attack-instant-constrained hybrid event-triggered scheme (HETS), which can not only contribute to reducing the network transmission overload, but also well descibe the network denial service behavior under attack interference. An asynchronous and ZOH-based controller is delicately constructed to mitigate the influence of DoS attacks and network-induced delay. A double-mode dependent Lyapunov–Krasovskii functional (LKF) is developed to set up some sufficient finite-time stability criteria for the concerned systems in view of the asynchronous switching effect. Finally, an application example of the urban railway system is offered to verify the proposed control algorithm.  相似文献   

13.
This paper investigates the resilient sliding mode control problem for cyber-physical systems (CPSs) with multiple transmission channels under denial-of-service (DoS) attacks. A set of finite-time observers is designed, and a switched integral-type sliding surface is introduced. Thus, the impact of unreliable state estimating channels is reduced, and the disturbance rejection performance is also improved. The number of linear matrix inequalities (LMIs) decreases compared with some existing results in designing the observer-based controller, and the input-to-state stability (ISS) is guaranteed. Moreover, the input saturation and event-triggering scheme are considered in the controller and handled by an auxiliary system. The network congestion in the control channel is thus relieved, and the Zeno behavior is excluded simultaneously. Finally, an example of an unmanned stratospheric airship is given to demonstrate effectiveness of the proposed resilient control approach.  相似文献   

14.
The distributed event-triggered secure consensus control is discussed for multi-agent systems (MASs) subject to DoS attacks and controller gain variation. In order to reduce unnecessary network traffic in communication channel, a resilient distributed event-triggered scheme is adopted at each agent to decide whether the sampled signal should be transmitted or not. The event-triggered scheme in this paper can be applicable to MASs under denial-of-service (DoS) attacks. We assume the information of DoS attacks, such as the attack period and the consecutive attack duration, can be detected. Under the introduced communication scheme and the occurrence of DoS attacks, a new sufficient condition is achieved which can guarantee the security consensus performance of the established system model. Moreover, the explicit expressions of the triggering matrices and the controller gain are presented. Finally, simulation results are provided to verify the effectiveness of the obtained theoretical results.  相似文献   

15.
A novel distributed secondary voltage and frequency control strategy is proposed with the Zeno-free event-triggered scheme for an island alternating current (AC) microgrid under Denial-of-Service (DoS) attacks. A DoS attack compensation mechanism and an event-triggered mechanism on the basis of the checking scheme are developed. Then, a secure event-checked based event-triggered secondary control method is explored to guarantee the tracking performance of the microgrid under DoS attacks. Further, some linear matrix inequalities (LMIs)-based sufficient conditions are derived to design the controller. What’s more, the proposed asynchronous periodic triggering method can efficiently save communication resources and further reduce the update number of the controller. Finally, the efficiency of this work is verified by an islanded AC microgrid with comparisons.  相似文献   

16.
This paper aims to solve scaled consensus problem for general linear multiagent systems under denial-of-service (DoS) attacks. Firstly, we propose a new scaled disagreement vector and investigate its properties under switching and undirected graphs. Secondly, we establish sufficient conditions in terms of linear matrix inequalities in order to guarantee that the multiagent system achieves scaled consensus under DoS attacks. Contrary to most existing studies where DoS attacks on all the channels are same, in this note, we formulate the problem such that the adversary compromises each agent independently. Moreover, the distributed consensus protocol is investigated for networks with time-varying delay. Finally, two simulation examples are given to demonstrate effectiveness of the proposed design methodologies.  相似文献   

17.
This paper is concerned with the secure bipartite consensus of second-order multi-agent systems under denial-of-service (DoS) attacks. The communication network is an antagonistic network, in which there is cooperative or competitive relationship between neighboring agents. Meanwhile, information cannot be transmitted when the system is attacked. A novel event-triggered control algorithm based on sampled data is proposed to save limited resources and exclude the Zeno behavior. By applying the convergence of monotone sequences, graph theory as well as the discrete-time Lyapunov function method, some sufficient conditions on threshold parameters, frequency and duration of DoS attacks, and sampling period are derived to ensure the bipartite consensus under DoS attacks. Finally, the correctness and advantages of theoretical results are demonstrated by a numerical simulation.  相似文献   

18.
This paper is concerned with event-triggered secure consensus for a class of linear multi-agent systems (MASs) under denial-of-service (DoS) attacks. Different from some existing methods, a multi-sensor multi-rate (MSMR) sampling mechanism is introduced to sample system states of agents. A class of multi-rate observer is devised to deal with some problems involved, such as the asynchrony and the incompleteness of several state sub-vectors, caused by the MSMR sampling mechanism. By using the partially updated state information of each agent, a novel multi-rate event-triggered mechanism is proposed, in which the continuous monitoring of the combined measurement information is avoided. Then, an event-based distributed secure consensus control protocol is presented against DoS attacks for the MAS under a directed communication topology. By taking into account the information on the duration and frequency of the DoS attacks, a sufficient condition is established to design suitable control protocols such that consensus can be achieved. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

19.
This paper investigates secure bipartite consensus tracking of linear multi-agent systems under denial-of-service(DoS) attacks by using event-triggered control mechanism with data sampling. Both bipartite leader-following and containment tracking consensus are considered in this paper. The event-triggered control protocol using sampled-data information is designed to save limited resources. The communication channels are interrupted by intermittent DoS attacks. Sufficient conditions on the sampling periods, attack frequency and attack duration are obtained to ensure secure bipartite tracking consensus of the multi-agent systems. Finally, simulation example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

20.
This paper studies the problem of designing a resilient control strategy for cyber-physical systems (CPSs) under denial-of-service (DoS) attacks. By constructing an H observer-based periodic event-triggered control (PETC) framework, the relationship between the event-triggering mechanism and the prediction error is obtained. Then, inspired by the maximum transmission interval, the input-to-state stability of the closed-loop system is proved. Compared with the existing methods, a Zeno-free periodic PETC scheme is designed for a continuous-time CPS with the external disturbance and measurement noise. In particular, the objective of maximizing the frequency and duration of the DoS attacks is achieved without losing robustness. Finally, two examples are given to verify the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号