首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Four groups of male subjects participated in anaerobic testing on a Repco EX 10 cycle ergometer to determine the effectiveness of sodium bicarbonate (0.3 g kg‐1 body mass) as an ergogenic aid during exercise of 10, 30, 120 and 240 s duration. Blood was collected 90 min prior to ingestion of sodium bicarbonate (NaHCO3), after ingestion of NaHCO3 and immediately post‐exercise from a heated (43–46°C) fingertip and analysed immediately post‐collection for pH, base excess, bicarbonate and lactate. The total work undertaken (kj) and peak power achieved during the tests were also obtained via a Repco Work Monitor Unit. Blood bicarbonate levels were again increased above the control and placebo conditions (P< 0.001) and blood lactate levels were also increased following the bicarbonate trials. The pH levels fell significantly (P<0.05) below the control and placebo conditions in all trials. The results indicate that NaHCO3 at this dosage has no ergogenic benefit for work of either 10 or 30 s duration, even though blood bicarbonate levels were significantly increased (P<0.05) following ingestion of NaHCO3. For work periods of 120 and 240 s, performance was significantly increased (P<0.05) above the control and placebo conditions following NaHCO3 ingestion.  相似文献   

2.
Eight trained male cyclists who competed regularly in track races, were studied under control, alkalotic (NaHCO3) and placebo (CaCO3) conditions in a laboratory setting to study the effect of orally induced metabolic alkalosis on 60 s anaerobic work and power output on a bicycle ergometer. Basal, pre- and post-exercise blood samples in the three conditions were analysed for pH, pCO2, pO2, bicarbonate, base excess and lactate. All blood gas measurements were within normal limits at basal levels. There were significant differences in the amount of work produced, and in the maximal power output produced by the cyclists in the experimental condition when compared to the control and placebo conditions (P less than 0.01). The post-exercise pH decreased in all three conditions (P less than 0.05) and post-exercise pCO2 increased significantly in the alkalosis trial (P less than 0.01). In the alkalotic condition, the pre-exercise base excess and HCO3- levels were both higher (P less than 0.05) than the basal levels, suggesting that the bicarbonate ingestion had a significant increase in the buffering ability of the blood. Post-exercise lactate levels were significantly higher (P less than 0.05) after the alkalotic trial when compared to the other two conditions, immediately post-exercise and for the next 3 min. Post-exercise lactate levels were higher than basal or pre-exercise levels (P less than 0.001). This was true immediately post-exercise and for the next 5 min. The results of this study suggest that NaHCO3 is an effective ergogenic aid when used for typically anaerobic exercise as used in this experiment. We feel that this ergogenic property is probably due to the accelerated efflux of H+ ions from the muscle tissue due to increased extracellular bicarbonate buffering.  相似文献   

3.
Bicarbonate ingestion: effects of dosage on 60 s cycle ergometry.   总被引:3,自引:0,他引:3  
Nine healthy male subjects who were all participating in athletic events volunteered to take part in this study, the aim of which was to determine whether there are specific dosages of sodium bicarbonate (HCO3-) that are useful as an ergogenic aid as far as anaerobic performance times are concerned. A control, placebo (CaCO3 500 mg kg-1) and five dosages of bicarbonate (100, 200, 300, 400 and 500 mg kg-1) were used. The anaerobic test consisted of pedalling a Repco Exertech cycle ergometer for 1 min during which total work (kJ) and peak power (W) were measured. The subjects completed more work in the 200 (P < 0.05), 300, 400 and 500 mg kg-1 (P < 0.005) trials with most work being undertaken in the 300 mg kg-1 trial (41.9 kJ min-1). Peak power was not significantly different from the control until the 300 mg kg-1 dose, and there were no further changes from this with increasing doses of HCO3-. The highest level of peak power achieved was 1295 +/- 72.8 W at the 300 mg kg-1 dosage. Blood pH indicated that after ingestion of all but the 100 mg kg-1 dose, a state of alkalosis was achieved (P < 0.005), and this was also indicated by changes in base excess. Bicarbonate levels increased post-ingestion in all but the 100 mg kg-1 dose, with these changes reflecting the changes that occurred in the work output. Blood lactate (BLa) levels increased post-exercise (P < 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake (VO2 max)) 47.0 ± 7 ml · kg · min(-1)) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l(-1)) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l(-1), respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

5.
The aim of this study was to determine the effects of caffeine ingestion on a 'preloaded' protocol that involved cycling for 2 min at a constant rate of 100% maximal power output immediately followed by a 1-min 'all-out' effort. Eleven male cyclists completed a ramp test to measure maximal power output. On two other occasions, the participants ingested caffeine (5 mg. kg(-1)) or placebo in a randomized, double-blind procedure. All tests were conducted on the participants' own bicycles using a Kingcycle test rig. Ratings of perceived exertion (RPE; 6-20 Borg scale) were lower in the caffeine trial by approximately 1 RPE point at 30, 60 and 120 s during the constant rate phase of the preloaded test (P <0.05). The mean power output during the all-out effort was increased following caffeine ingestion compared with placebo (794+/-164 vs 750+/-163 W; P=0.05). Blood lactate concentration 4, 5 and 6 min after exercise was also significantly higher by approximately 1 mmol. l(-1) in the caffeine trial (P <0.05). These results suggest that high-intensity cycling performance can be increased following moderate caffeine ingestion and that this improvement may be related to a reduction in RPE and an elevation in blood lactate concentration.  相似文献   

6.
In order to determine the influence of two artificially induced alkalotic states on the ability to perform maximal exercise, six male subjects (mean age, 22.0 years; mean height, 176.8 cm; mean weight, 69.1 kg; mean VO2 max, 3.83 l min-1) were studied during three experimental trials. The subjects performed six 60-s cycling bouts, at a work rate corresponding to 125% VO2 max, with 60 s recovery between work bouts; these regimens were performed 1 h after the ingestion of a solution containing either; I, placebo; II, NaHCO3 in a dosage of 0.15 g per kg body weight; or III, NaHCO3 0.30 g per kg body weight. The sixth work bout was continued until the pedal velocity dropped below 50 rev min-1. Total work done for the entire work period was calculated. Blood samples were taken from a forearm vein prior to the exercise bouts for analysis of pH and HCO3. The results showed a significant pre-exercise difference in pH and HCO3 for all conditions (P less than 0.01). In conditions where artificial alkalosis had been achieved prior to exercise there was significant increase in the work produced: I, 121.6 kJ; II, 133.1 kJ; III, 133.5 kJ (P less than 0.05). The time to fatigue in the six bout was also significantly increased; I, 74.7 s; II, 111.0 s; III, 106.0 p (P less than 0.05). There were no significant differences between conditions II and III. Thus augmentation of the bicarbonate reserves has a significant positive effect on the energy metabolism in interval-type exercise, leading to an increase in the work done and in the time to fatigue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Effect of induced alkalosis on swimming time trials.   总被引:1,自引:0,他引:1  
Previous studies have shown that sodium bicarbonate ingestion prior to exercise may improve performance during repeated (interval) bouts. To examine the practical implications of such findings, seven collegiate swimmers participated in simulated swim competitions of multiple events following sodium bicarbonate (B) ingestion, placebo (P) ingestion and control (C--no ingestion) treatments. Each swimmer reported to the laboratory 1 h prior to the simulated competitions (72 h apart) and was randomly assigned to one of the three experimental treatments. Competition consisted of one relay (100 yards; 91.4 m) and two individual (200 yards; 182.8 m) swimming events with 20 min rest between events. Analysis of variance (ANOVA) with repeated measures revealed no significant differences in performance times as a result of the three treatments (P greater than 0.05). The results suggest that sodium bicarbonate ingestion prior to swim competition consisting of significant rest intervals between events is not an ergogenic procedure.  相似文献   

8.
Repeated bouts of sprint running after induced alkalosis.   总被引:1,自引:0,他引:1  
Seven healthy male subjects performed 10 maximal 6-s sprints, separated by 30-s recovery periods, on a non-motorized treadmill. On two occasions, separated by 3 days, the subjects ingested a solution of either sodium bicarbonate (NaHCO3; alkaline) or sodium chloride (NaCl; placebo), 2.5 h prior to exercise. The doses were 0.3 g kg-1 body mass for the alkaline treatment and 1.5 g total for the placebo, dissolved in 500 ml of water. The order of testing was randomly assigned. Pre-exercise blood pH was 7.43 +/- 0.02 and 7.38 +/- 0.01 for the alkaline and placebo trials respectively (P less than 0.01). Performance indices (i.e. mean and peak power outputs and mean and peak running speeds) were significantly reduced as a result of the cumulative effects of successive sprints, but not significantly affected by the treatments. However, the total work done (i.e. mean power output) in the alkaline condition was 2% higher than that achieved in the placebo condition. Post-exercise blood lactate concentrations were higher for the alkaline treatment than for the placebo condition (15.3 +/- 3.7 vs 13.6 +/- 3.0 mM respectively; P less than 0.01), but blood pH was similar in both conditions (alkaline: 7.15 +/- 0.13; placebo: 7.09 +/- 0.11). In both conditions, a relationship was found between post-exercise blood lactate and mean power output (alkaline: r = 0.82, P less than 0.01; placebo: r = 0.79, P less than 0.01). No significant differences were found in VE, VO2 and VCO2 between the two experimental conditions. This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.  相似文献   

9.
The aim of this study was to determine the effects of caffeine ingestion on a ‘preloaded’ protocol that involved cycling for 2?min at a constant rate of 100% maximal power output immediately followed by a 1-min ‘all-out’ effort. Eleven male cyclists completed a ramp test to measure maximal power output. On two other occasions, the participants ingested caffeine (5?mg?·?kg?1) or placebo in a randomized, double-blind procedure. All tests were conducted on the participants' own bicycles using a Kingcycle? test rig. Ratings of perceived exertion (RPE; 6–20 Borg scale) were lower in the caffeine trial by approximately 1 RPE point at 30, 60 and 120?s during the constant rate phase of the preloaded test (P?<0.05). The mean power output during the all-out effort was increased following caffeine ingestion compared with placebo (794±164 vs 750±163?W; P?=?0.05). Blood lactate concentration 4, 5 and 6?min after exercise was also significantly higher by approximately 1?mmol?·?l?1 in the caffeine trial (P?<0.05). These results suggest that high-intensity cycling performance can be increased following moderate caffeine ingestion and that this improvement may be related to a reduction in RPE and an elevation in blood lactate concentration.  相似文献   

10.
We examined the effects of pre-exercise sodium bicarbonate (NaHCO3) ingestion on the slow component of oxygen uptake (VO2) kinetics in seven professional road cyclists during intense exercise. One hour after ingesting either a placebo or NaHCO3 (0.3 g x kg body mass(-1)), each cyclist (age, 25 +/- 2 years; VO2max, 74.7 +/- 5.9 ml x kg(-1) x min(-1); mean +/- s) performed two bouts of 6 min duration at an intensity of 90% VO2max interspersed by 8 min of active recovery. Gas exchange and blood data (pH, blood lactate concentration and [HCO3-]) were collected during the tests. In both bouts, the slow component of VO2 was defined as the difference between end-exercise VO2 and the VO2 at the end of the third minute. No significant difference was found in the slow component of VO2 between conditions in the first (NaHCO3, 210 +/- 69 ml; placebo, 239 +/- 105 ml) or second trial (NaHCO3, 123 +/- 88 ml; placebo, 197 +/- 101 ml). In conclusion, pre-exercise NaHCO3 ingestion did not significantly attenuate the VO2 slow component of professional road cyclists during high-intensity exercise.  相似文献   

11.
The purpose of this study was to determine the effects of the simultaneous use of pyridoxine-alpha-ketoglutarate (PAK) and sodium bicarbonate (NaHCO3) on short-term maximal exercise capacity in eight well-trained male cyclists. The study consisted of the determination of maximal power output and the administration of various combinations of placebos, PAK and NaHCO3, followed by a short-term maximal exercise test. To determine maximal power output (power(max)), the subjects performed a continuous, incremental test on a Monark bicycle ergometer to symptom limited maximum (test 1). To determine the effects of NaHCO3 and PAK on short-term maximal exercise performance, the subjects were administered either placebo (PLA), PAK and sodium bicarbonate (P/B), PAK and placebo (PAK), or sodium bicarbonate and placebo (BIC) prior to performing short-term maximal exercise (test 2). Oral tablets of NaHCO3 and PAK were given in doses of 200 mg kg-1 and 50 mg kg-1 respectively. The subjects pedalled at the power output corresponding to 100% of their VO2 max at 70 rev min-1 until voluntary cessation or until they were unable to maintain pedal revolution rate. Venous blood samples were drawn at rest (RES), cessation of exercise (CES) and after 2 min of recovery (REC) and analysed for lactate, pH and bicarbonate ion concentration. The subjects attained an average maximum power output of 377 +/- 20 W during the graded maximal pre-test (test 1). There were no significant differences between treatments in the ability to sustain power(max) during test 2. During test 2, the subjects were able to sustain power(max) for 7.6 +/- 4.3 min with P/B, 6.7 +/- 2.9 min with PAK, 7.3 +/- 4.9 min with BIC and 6.9 +/- 2.7 min with placebo (mean +/- S.E.). Blood lactate (BLa) was significantly elevated at cessation of exercise and remained elevated during recovery, but there were no significant differences between treatments. Bicarbonate fell significantly during exercise and recovery in each treatment. At rest, bicarbonate levels were significantly higher in both the P/B and BIC than in the PAK or PLA treatments. Pooled data from the P/B and BIC treatments demonstrated a significant increase in pH at rest and end of exercise when compared to PLA treatment. These data suggest that sodium bicarbonate rather than PAK was responsible for this increase. In summary, our data suggest that in the dosages used in this study, administration of sodium bicarbonate or PAK, alone or in combination, is ineffective in increasing short-term maximal exercise capacity.  相似文献   

12.
Abstract It is not known if ergogenic effects of caffeine ingestion in athletic groups occur in the sedentary. To investigate this, we used a counterbalanced, double-blind, crossover design to examine the effects of caffeine ingestion (6 mg?·?kg(-1) body-mass) on exercise performance, substrate utilisation and perceived exertion during 30 minutes of self-paced stationary cycling in sedentary men. Participants performed two trials, one week apart, after ingestion of either caffeine or placebo one hour before exercise. Participants were instructed to cycle as quickly as they could during each trial. External work (J?·?kg(-1)) after caffeine ingestion was greater than after placebo (P?=?0.001, effect size [ES]?=?0.3). Further, heart rate, oxygen uptake and energy expenditure during exercise were greater after caffeine ingestion (P?=?0.031, ES?=?0.4; P?=?0.009, ES?=?0.3 and P?=?0.018, ES?=?0.3; respectively), whereas ratings of perceived exertion and respiratory exchange ratio values did not differ between trials (P?=?0.877, ES?=?0.1; P?=?0.760, ES?=?0.1; respectively). The ability to do more exercise after caffeine ingestion, without an accompanying increase in effort sensation, could motivate sedentary men to participate in exercise more often and so reduce adverse effects of inactivity on health.  相似文献   

13.
The aim of this study was to assess the effect of caffeine ingestion on 8 km run performance using an ecologically valid test protocol. A randomized double-blind crossover study was conducted involving eight male distance runners. The participants ran an 8 km race 1 h after ingesting a placebo capsule, a caffeine capsule (3 mg x kg(-1) body mass) or no supplement. Heart rate was recorded at 5 s intervals throughout the race. Blood lactate concentration and ratings of perceived exertion were recorded after exercise. A repeated-measures analysis of variance (ANOVA) identified a significant treatment effect for 8 km performance time (P < 0.05); caffeine resulted in a mean improvement of 23.8 s (95% confidence interval [CI] = 13.1 to 34.5 s) in 8 km performance time (1.2% improvement, 95% CI = 0.7 to 1.8%). In addition, a two-way (time x condition) repeated-measures ANOVA identified a significantly higher blood lactate concentration 3 min after exercise during the caffeine trial (P < 0.05). We conclude that ingestion of 3 mg . kg(-1) body mass of caffeine can improve absolute 8 km run performance in an ecologically valid race setting.  相似文献   

14.
This study investigated the effects of two different doses of caffeine on endurance cycle time trial performance in male athletes. Using a randomised, placebo-controlled, double-blind crossover study design, sixteen well-trained and familiarised male cyclists (Mean ± s: Age = 32.6 ± 8.3 years; Body mass = 78.5 ± 6.0 kg; Height = 180.9 ± 5.5 cm VO2(peak) = 60.4 ± 4.1 ml x kg(-1) x min(-1)) completed three experimental trials, following training and dietary standardisation. Participants ingested either a placebo, or 3 or 6 mg x kg(-1) body mass of caffeine 90 min prior to completing a set amount of work equivalent to 75% of peak sustainable power output for 60 min. Exercise performance was significantly (P < 0.05) improved with both caffeine treatments as compared to placebo (4.2% with 3 mg x kg(-1) body mass and 2.9% with 6 mg x kg(-1) body mass). The difference between the two caffeine doses was not statistically significant (P = 0.24). Caffeine ingestion at either dose resulted in significantly higher heart rate values than the placebo conditions (P < 0.05), but no statistically significant treatment effects in ratings of perceived exertion (RPE) were observed (P = 0.39). A caffeine dose of 3 mg x kg(-1) body mass appears to improve cycling performance in well-trained and familiarised athletes. Doubling the dose to 6 mg x kg(-1) body mass does not confer any additional improvements in performance.  相似文献   

15.
Abstract

This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake ([Vdot]O2max) 47.0 ± 7ml · kg · min?1) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l?1) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l?1, respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

16.
It is known that an increased level of red blood cell 2,3-diphosphoglycerate (DPG) shifts the oxyhemoglobin dissociation curve to the right, thus allowing a greater unloading of oxygen at the tissue level. It has been hypothesized that phosphate might help increase VO2max by increasing 2,3-DPG level. Eight trained cyclists underwent three cycle ergometer tests (control, placebo, and experimental) to determine whether phosphate ingestion had any positive effect on VO2max, time to exhaustion, serum 2,3-DPG, and serum phosphate levels. We found no change between the control, placebo, or experimental conditions in pretest serum phosphate levels, but we did find increases in 2,3-DPG levels in the phosphate condition (p less than .05), which suggests that even a small amount of phosphate could increase levels of 2,3-DPG. We also found significant differences in VO2max between the control (p less than .05) and placebo (p less than .02) conditions and also in time to exhaustion between the three conditions (p less than .05). We suggest that phosphate may have an ergogenic effect, but clearly more work needs to be undertaken to ascertain the amount of phosphate required and the magnitude of the effect.  相似文献   

17.
In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; VO(2max) 55.5 ml x kg(-1) x min(-1), s = 5.8) undertook repeated sprints at 120% of the speed at which VO(2max) was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = 0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = - 0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

18.
The aim of this study was to investigate the effect of pre-induced inspiratory muscle fatigue (IMF) on race-paced swimming and acid-base status. Twenty-one collegiate swimmers performed two discontinuous 400-m race-paced swims on separate days, with (IMF trial) and without (control trial) pre-induced IMF. Swimming characteristics, inspiratory and expiratory mouth pressures, and blood parameters were recorded. IMF and expiratory muscle fatigue (P < 0.05) were evident after both trials and swimming time was slower (P < 0.05) from 150-m following IMF inducement. Pre-induced IMF increased pH before the swim (P < 0.01) and reduced bicarbonate (P < 0.05) and the pressure of carbon dioxide (PCO2) (P < 0.05). pH (P < 0.05), bicarbonate (P < 0.01) and PCO2 (P < 0.05) were lower during swimming in the IMF trial. Blood lactate was similar before both trials (P > 0.05) but was higher (P < 0.01) in the IMF trial after swimming. Pre-induced IMF induced respiratory alkalosis, reduced bicarbonate buffering capacity and slowed swimming speed. Pre-induced and propulsion-induced IMF reflected metabolic acidosis arising from dual role breathing and propulsion muscle fatigue.  相似文献   

19.
This study examined the effect of carbohydrate ingestion on metabolic and performance-related responses during and after a simulated 1h cycling time trial. Eight trained male cyclists (VO 2 peak = 66.5ml kg -1 min -1 ) rode their own bicycles mounted on a windload simulator to imitate real riding conditions. At a self-selected maximal pace, the cyclists performed two 1h rides (separated by 7 days) and were fed either an 8% carbohydrate or placebo solution. The beverages were administered 25 min before (4.5ml kg -1 ) and at the end (4.5ml kg -1 ) of the ride. With carbohydrate feeding, plasma glucose tended (P = 0.21) to rise before the time trial. Compared with rest, the plasma glucose concentration decreased significantly (P < 0.05) at the end of both rides, with no statistically significant difference being observed between treatments. Thereafter, plasma glucose increased significantly (P < 0.05) at 15 and 30 min into recovery, and was significantly higher at 30 min during the carbohydrate trial compared with the placebo trial. No significant changes in plasma free fatty acids were observed during the ride. However, a significant increase (P < 0.05) in free fatty acids was found at 15 and 30 min into recovery, with no difference between trials. Mean power output was significantly (P < 0.05) greater during the carbohydrate compared with the placebo trial (mean - S.E.: 277-3 and 269-3W, respectively). The greater distance covered in the carbohydrate compared with the placebo trial (41.5-1.06 and 41.0–1.06km, respectively; P < 0.05) was equivalent to a 44s improvement. We conclude that pre-exercise carbohydrate ingestion significantly increases endurance performance in trained cyclists during a 1h simulated time trial. Although the mechanism for this enhancement in performance with carbohydrate ingestion cannot be surmised from the present results, it could be related to a higher rate of carbohydrate oxidation, or to favourable effects of carbohydrate ingestion on the central component of fatigue.  相似文献   

20.
Nine male triathletes were studied during 160 min of exercise at 65% VO2 max on two occasions to examine the effect of glucose polymer ingestion on energy and fluid balance. During one trial they received 200 ml of a 10% glucose polymer solution at 20 min intervals during exercise (CHO), while in the other they received an equal volume of a sweet placebo (CON). On average, blood glucose levels (CON = 4.2 +/- 0.2 mmol l-1, CHO = 4.8 +/- 0.1, mean +/- S.E.) and respiratory exchange ratios (CON = 0.84 +/- 0.01, CHO = 0.87 +/- 0.01) during exercise were higher (P less than 0.05) as a result of the glucose polymer ingestion. There were no differences between trials, however, in the estimated plasma volume changes during exercise. Exercise time to exhaustion at an intensity corresponding to 110% VO2 max, performed 5 min after the submaximal exercise, was not influenced by glucose polymer ingestion. Relative to a control exercise bout conducted without prior exercise, however, sprint performance and postexercise blood lactate accumulation were impaired in both trials. It is concluded that glucose polymer ingestion maintains blood glucose levels and a high rate of carbohydrate oxidation during prolonged exercise, without compromising fluid balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号