首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正一元二次方程以及二次函数是九年级的重要内容,它们之间联系紧密。我现对它们的关系加以总结、归纳,来帮助学生学习和复习。二次函数通用解析式为:y=ax2+bx+c(a、b、c为常数,a≠0),一元二次方程一般形式为ax2+bx+c=0(a、b、c为常数,a≠0),单从形成上看就很像。当二次函数的值为零时,也就是说求解二次函数与x轴交点问题时,可转化为一元二次方程来解决。一、一元二次方程ax2+bx+c=0的根就是二次函数y=ax2+bx+c图像与x轴的交点1.△0时,方程有两个不相等的实数根x1、x2,二次函数与x轴有两个不同的交点,其  相似文献   

2.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

3.
为了二次函数都知道:二次函数y=ax2+bx+c(a、b、c为常数,a≠0),当y=0时,则此函数形式化为ax2+bx+c=0(a≠0).即二次函数就化为一元二次方程了。所以一元二次方程实际上就是二次函数的特殊形式。因此,二次函数与x轴的交点问题就可以用一元二次方程根的分布和判定定理来解决。下面我们就用例子来谈谈二次函数与x轴的交点。  相似文献   

4.
<正>我们知道,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c (a≠0)的图象与x轴交点的横坐标.在求解相关问题时,它们之间的这种关系如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.下面举例说明.一、判断二次函数图象与x轴的交点情况  相似文献   

5.
<正>一元二次方程ax2+bx+c=0的根是二次函数y=ax2+bx+c=0的根是二次函数y=ax2+bx+c(a≠0)的零点,即抛物线与x轴交点的横坐标,关于一元二次方程ax2+bx+c(a≠0)的零点,即抛物线与x轴交点的横坐标,关于一元二次方程ax2+bx+c=0根的分布情况是同学们学习的难点,我结合二次函数图像,对一元二次方程根的分布问题进行了一些探讨和总结。设一元二次方程ax2+bx+c=0根的分布情况是同学们学习的难点,我结合二次函数图像,对一元二次方程根的分布问题进行了一些探讨和总结。设一元二次方程ax2+bx+c=0的两个  相似文献   

6.
二次函数与一元二次方程之间有着密切的联系. 在二次函数y=ax2 bx c(a≠0)中,令y=0,即得一元二次方程ax2 bx c=0.若此时方程有实数根,则此实数根就是二次函数图象与x轴交点的横坐标.从这个基本事实出发,即可得到如下一些基本关系: 1.判别二次函数图象与x轴有无交点,可运用相应的一元二次方程根的  相似文献   

7.
李冬学 《新高考》2008,(10):32-33
关于x的一元二次方程ax2+bx+c=0(a,b,c∈R且a≠0)的根即为其对应的函数y=ax2+bx+c的零点,亦即该函数的图象与x轴的交点的横坐标.一元二次方程的根的分布问题主要有两类:已知方程中参数  相似文献   

8.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

9.
<正> 性质在一元二次方程ax2+bx+c=0(a≠0)中,若a+b+c=0,则该方程必有一根为1. 证明∵a+b+C=0,且a≠0,∴a=-(b+C). ∴ax2+bx+c=-(b+c)x2+bx+C =-bx2-cx2+bx+c  相似文献   

10.
<正>已知一元二次方程解的情况,我们可以利用根的判别式求方程中参数的取值范围.而在学习了二次函数的图象和性质后,我们更习惯采用数形结合的方法来解决问题.下面通过一例说明和比较这两种方法的运用.例题二次函数y=ax2+bx+c(a≠0),(a,b,c为常数)的图象如图1所示.(1)若方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围;(2)若方程ax2+bx+c=k(a≠0)有两个相等的实数根,求k的值;(3)若方程ax2+bx+c=k(a≠0)没有实数根,求k的取值范围.  相似文献   

11.
构造一元二次方程是一种重要的解题技巧,它可以使一些看似与方程无关的问题,用方程的知识得以简捷地解决.那么,应根据什么来构造一元二次方程呢? 一、利用一元二次方程根的意义我们知道,若x1,x2是方程ax2+bx+c=0(a≠0)的两个根,则有ax12+bx1+c=0、ax22+bx2+c=  相似文献   

12.
一元二次方程ax2 +bx+c=0(a≠θ)的系数和a+b+c=0,则x=1满足方程x2+bx+c=0,即x=1是该方程的一个根.反过来,x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,则ab+c=0. 运用这个结论可解决不少的问题.请看: 例1 解方程:4x2-5x+ 1=0. 分析与解:因为4+(-5)+1=0,所以x1=1是方程的一个根.设另一根为x2,由根与系数的关系,得1×x2=1/4,即x2=1/4,所以方程的解是x1=1,xx=1/4. 温馨小提示:已知一元二次方程的一个根,运用根与系数的关系可简捷地求出另一个根.  相似文献   

13.
二次函数 y=ax2 bx c(a≠ 0 )的图象及性质在初中代数教材中占有重要地位 ,这部分知识与前后内容联系紧密 ,灵活性、综合性较强。下面着重介绍二次函数 y=ax2 bx c(a≠ 0 )与一元二次方程 ax2 bx c=0 (a≠ 0 )之间的关系。一、一元二次方程 ax2 bx c=0 (a≠ 0 )的根的情况决定着抛物线 y=ax2 bx c(a≠ 0 )与x轴交点的情况。下面是二次函数 y=ax2 bx c(a>0 )的图象 ,观察图象 ,回答 :x取何值时 ,y=0。  (甲 )   (乙 )   (丙 )由 (甲 )图可以看出 ,抛物线y=ax2 bx c与 x轴交于两点(- 1,0 )与 (3,0 ) ,也就是说 ,有…  相似文献   

14.
定理二次函数y=ax2+bx+c的值域是[0,+∞)的充要条件是a>0且b2-4ac=0. 证明因为y=ax2+bx+c=a(x+b/2a)2+4ac-b2/4a,x∈R,所以二次函数y=ax2+bx+c的值域是[0,+∞)←→y的最小值是0,无最大值←→a>0且b2-4ac=0.  相似文献   

15.
若x1、x2是方程ax2+bx+c=O(a≠O)的两根,则ax_(1)~2+bx1+c=0和ax_(2)~2+bx2+c=0.方程与方程根的这一关系在解题中有着广泛的应用. 例1(1994年河南省中考题)以x2-3x-1=0的两个根的平方为根的一元二次方程是( ). (A)y2-11y+1=0 (B)y2+y-11=0  相似文献   

16.
因为二次函数y=ax2+bx+c(a≠0)的图象与a,b,c,△有关系,所以由二次函数的大至图象就能确定二次函数中的系数和△的关系.现举例说明.例1已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论1b2-4ac<0,2ab>0,3a-b+c=0,44a+b=0,5当y=2时,x只能有一个值.其中正确是()  相似文献   

17.
一元二次方程ax2 +bx +c =0 (a≠ 0 )的根的判别式△ =b2 - 4ac ,不仅可以判定方程实根情况 ,还可以用它判别二次三项式ax2 +bx +c因式分解的方法与范围 ,求抛物线y =ax2 +bx +c(a≠ 0 )与x轴交点的个数 ,以及证明某些几何不等式问题 ,现以有关中考试题为例 ,简述一元二次方程根的判别式的应用  相似文献   

18.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

19.
<正> 性质若a+b+c=0,则x=1是关于x的一元二次方程ax2+bx+c=0的根;若a-b+c=0,则x=-1是关于x的一元二次方程ax2+bx+c=0的根. 运用一元二次方程的根的定义不难证明这一性质.而灵活运用  相似文献   

20.
二次函数与一元二次方程之间有着密切的联系.在二次函数y=ax~2+bx+c(a≠0)中.令y=0,即得一元二次方程ax~2+bx+c=0.若此时方程有实数根,则此实数根就是二次函数图象与x轴交点的横坐标.从这个基本事实出发,即可得到如下一些基本关系: 1.判别二次函数图象与x轴有无交点,可运用相应的一元二次方程根的判别式△=b~2-4ac,即  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号