首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高中《代数》(甲种本)第一册P.217有一道习题: 在△ABC中,求证: tgA+tgB+tgC=tgAtgBtgC. 这道习题结论可进行如下的推广: (1)若实数α,β,γ,满足α+β十γ=kπ(k∈Z),则 tgα+tgβ+tgγ=tgαtgβtgγ. (2)若实数α,β,γ,满足 tgα+tgβ+tgγ=tgαtgβtgγ,则α+β+γ=kπ(k∈Z). 应用以上结论解决某些三角,代数,几何问题.  相似文献   

2.
本刊91年第1期《三角函数式的恒等变换与应用》一文的一例及其解答如下: 例12 已知(tg(α+β-γ))/(tg(α-β+γ))=tgγ/tgβ,求证sin2α+sin2β+sin2γ=0 证明:把已知化为 (sin(α+β-γ)cos(α+β-γ))/(cos(α+β-γ)sin(α+β-γ))=sinγcosβ/cosγsinβ由合分比定理,化简得 (sin2α)/(sin2(β-γ))=(sin(γ+β))/(sin(γ-β))  相似文献   

3.
把公式(T_(α+β)): tg(α+β)=(tgα+tgβ)/(1-tgαtgβ) (α,β,α+β≠nπ+π/2(n∈Z))中的β换成-β得公式(T_(α-β)): tg(α-β)=(tgα-tgβ)/(1+tgαtgβ);又当α=β时得公式(T_(2α)): tg2α=(2tgα)/(1-tg~2α).  相似文献   

4.
在高中数学第一册中,有下面的一个三角恒等式: 在非直角三角形ABC中: tgA+tgB+tgC=tA·tgB·tgC (1)这是一个很有意思的恒等式,因为它是涉及到三实数之和等于这三实数之积的问题,因此它不论在几何或在代数中,公式(1)都有很广泛的应用。公式(1)的推广是: 如果α,β,γ满足α+β+γ=Kπ(K∈J),则 tgα+tgβ+tgγ=tgα·tgβ·tgγ (2) (2)的逆定理是: 如果tgα+tgβ+tgγ=tgα·tgβ·tgγ,则α+β+γ=Kπ (K∈J) (3) 这三个恒等式的证明是大家所熟悉的,这里就不再赘述了,下面我们介绍这些等式  相似文献   

5.
高中《代数》第一册P181例3: 例3 设tgα、tgβ是一元二次方程ax~2+bx+c=0(b≠0)的两个根,求ctg(α+β)的值。解:在ax~2+bx+c=0中,a≠0,由一元二次方程根与系数之关系,得tgα+tgβ=-b/a,tgα·tgβ=c/a。而ctg(α+β)=1/tg(α+β)=(1-tgα·tgβ)/(tgα+tgβ)(*)由题设b≠0。故tgα+tgβ≠0,代入  相似文献   

6.
同学对许多公式是熟悉的,记得住,用得来,如a~2-b~2=(a+b)(a-b),tg(α±β)=(tgα±tgβ)/(1±tgαtgβ)……等等。可是,把它们反转来去活用,却很不习惯,如a-b=(a~2-b~2)/(a+b),tgα±tgβ=tg(α±β)·(1±tgαtgβ)……等等。殊不知在解决若干问题讨,若能逆用公式,常可简捷地得到结论。公式的逆用是解题的一种技巧,也是活学活用的一种表现。这种训练。有助于发展我们思维的灵活性、广阔性和认识的深刻性。下面举几个实例,作一些启发,希望同学们能举一反三,继续探讨。  相似文献   

7.
在本刊八一年第三期《怎样证明三角恒等式》一文中,有这样一道例题(P24例18):若sinβ=k·sin(2α+β); 求证:tg(α+β)=(1+k)/(1-k)tgα。原文证明如下:[解1].由已知条件得: k=sinβ/(βsin(2α+β));由待证之式得 k=(tg(α+β)-tgα)/(tg(α+β)+tgα)然后设法证明了两者相等。[解2].由已知得:(sin(2α+β))/sinβ=1/k;利用合分比定理与正余弦的和差化积公式,从此式推出待证之式。  相似文献   

8.
条件等式的证明在中学数学习题中占有较重要的地位。不少学生因没有掌握基本方法而感到解题困难。因此,教学中应注意向学生介绍证明条件等式的基本方法和思路。以下仅就一例,说明证明条件等式的四种基本方法。 例:已知sinβ=m sin(2α+β) 求证:tg(α+β)=(1+m)/(1-m) tgα [方法一]代入法。 变换已知等式,代入求证等式的一端,导出另一端,使条件等式的证明变为恒等式的证明,称为代入法。 [分析]要想证明tg (α+β)=(1+m)/(1-m)tgα成立,只要证明  相似文献   

9.
高中代数新教材上册212页例10,(旧上册 P_(170)例3).设tgα、tgβ是一元二次方程 ax~2 bx c=0(b≠0)的两个根,求 ctg(α β)的值.教材解法:在一元二次方程ax~2 bx c=0中a≠0,由一元二次方程根与系数关系,得,tgα tgβ=-b/a,tgαtgβ=c/a而ctg(α β)=1/tg(α β)=1-tgαtgβ[]tgα tgβ由题设b≠0,故tgα tgβ≠0,代入,得,ctg(α β)=1-c/a/-b/a=a-c/-b=c-a/b.这种解法很普遍,教材这样解,平时教师学生都这样  相似文献   

10.
有正整数解,则对任意m∈N,方程 x_11 x_22 … x_nn=y~m ②有正整数解。 证 设(x_1′,x_2′,…,x_n′;y_0)为①的一组正整数解,对任意的m∈N,取M=[m,β],而a_i|α,α|β,故  相似文献   

11.
平面几何中有关二次方程的问题,大多可以应用韦达定理去解。兹举例如下: 梯形ABCD中(图1),∠B作圆,交BC于E,F。设∠EAB=α,∠EAD=β,求证tgα和tgβ是方程AB·x~2-BC·x+CD=0的两个根。[分析]:在这道题中,只要证明tgα+tgβ=(BC)/(AB),tgαtgβ=(CD)/(AB)就行了。由已知条件,tgα=(BE)/(AB);联DE,∵AD为直径,90°。以AD为直径∠AED=∴tgβ=(DE)/(AE)。但(BE)/(AB)和(DE)/(AE)的分母不同,所以还要化简。联AF,因A、D、F、E四点共圆。∴∠ADE=∠AFE,∠FAB=90°-∠AFE=90°-∠ADE=β,∴tgβ=(BF)/(AB)。因此,解本题的关键在于证  相似文献   

12.
在三角中,求角的大小,通常是通过求这个角的一个三角函数值来解决.根据三角函数的周期性,一个三角函数值对应无数个角,因此用三角函数值确定角的大小的核心问题是确定角存在的范围.例1:已知α∈(0,π),β∈(0,π),cosα=4/5,tgβ=-7,求α+β.分析因为已知条件中有taβ的值,所以用 tg(α+β)确定α+β的大小比较简单.  相似文献   

13.
在处理某些代数问题时,我们可以从考虑条件式与结论式的结构特征入手,充分挖掘隐含条件,将字母变量恰当地通过正切函数代换,化代数问题为三角问题求解,往往会起到化繁为简,化难为易之功效,本文通过一些典型实例,归纳出用正切代换法解代数问题的若干思考途径,供大家参考. 一、对于一些隐含形如“m·n=l”(m,n∈R,下同)条件的问题,可考虑借助倒数关系作代换m=tgα,n=ctgα。例1 若  相似文献   

14.
有条件三角证明题是三角学中的难点,其中有一类问题应用合分比来证明是十分简便的,举例如下:例1 已知3 sinβ=sin(2α β),求证 tg(α β)=2tgα.证化为比例式 3/1=sin(2α β)/sinβ.应用合分比  相似文献   

15.
学习部编高中《数学》第三册复数一章之后,运用复数的幅角主值解决反三角函数的一些习题更简单,如何运用它来解题作一些浅说,现在以例子来说。例1 求证:arc tg 1/3+arc tg 1/5+arc tg 1/7+arc tg 1/8=π/4成立.如果运用三角知识来证,则必须二、三次运用公式 tg(α+β)=(tgα+tgβ)/(1-tgαtgβ)且烦,用复数证,就可简单.证明∵arc tg 1/3,arc tg 1/5,arc tg 1/7,arc tg 1/8它们都在0到π/4间,分别可设是复  相似文献   

16.
由人民教育出版社出版的新编高中教材《代数》上册(必修)第169页例1为: 已知:tgα=1/3,tgβ=—2。 (1)求ctg(α—β), (2)求α+β的值(其中0°<а<90°,90°<β<180°)。笔者认为教材安排此例有两个目的: 其一,巩固新学公式。其二,介绍求角问题的解题方法和步骤,对于有预习习惯的同学来说,容易从例题解答中看到此例的作用,教师讲解时,照本宣科,学生会觉得乏味,如果对此例作些改动,加进新的内容,新的要求,并以此为契机来组织教学,往往能够促进学生积极思维,活跃课堂气氛,收到较为理想  相似文献   

17.
数学问答     
1.已知0<α<π4,β为f(x)=cos2x π8的最小正周期,a=tanα 4β,-1,b=(cosα,2),且a·b=m,求2cosc2oαs αs-ins2i(nαα β)的值.(yuodaowei@163.com)解答:由β为f(x)=cos2x 8π的最小正周期,得β=π.因a·b=m,又a·b=cosα·tanα 4β-2,所以cosα·tanα 4β=m 2.因0<α<4π,  相似文献   

18.
三角学里,常见如下命题: 命题1 如果α,β都是正锐角,它们的正切依次是1/2,1/3。求证α+β=π/4。命题2 如果α、β、γ都是正锐角,它们的正切依次是1/2、1/5、1/8或1/2、1/4、1/(13)或1/3、1/3、1/7。求证α+β+γ=π/4 命题3 如果α、β、γ、ω都是正锐角,它们的正切依次是1/3、1/5、1/7、1/8或1/3、1/4、1/7、1/(13)。求证α+β+γ+ω=π/4。等等。此类命题、连续使用和角的正切公式是不难加以证明的。但对于它们的逆命题,该如何解答呢?通过对此类逆命题的解答。可以从另一侧面巩固加深对和角正切的认识,可以学会解某一类的不定方程、可以开发智力、启发思维、丰富教学内容、提高解数学题的能力。  相似文献   

19.
在平面三角中有与代数中的平方差公式a~2-b~2=(a+b)(a-b)形似的恒等式: sin~2α-sin~2β=cos~2β-cos~2α=sin(α+β)·sin(α-β),(1)与 cos~2α-sin~2β=cos~2β-sin~2α=cos(α+β)·cos(α-β)。(2) 这两组恒等式不妨叫做三角中的“平方差”公式。熟记这两组恒等式对于解答某些三角问题、几何问题或综合题会有所帮助。恒等式(1)证明如下: ∵sin~2α-sin~2β=1/2(1-cos2α)-1/2(1-cos2β)=1/2(cos2β-cos2α)=sin(α+β)sin(α-β),  相似文献   

20.
全日制高中数学课本第一册,第106页例8:“化asinα bcosα为一个角的一个函数的形式”,是一个很重要的例题,它不但在数学中,而且在物理中有着相当广泛的应用。课本上的解答结论是,asinα bcosα=(a~2 b~2)~(1/2)sin(α φ)(其中φ由tgφ=b/a确定)。我们认为这个结论是不完善的。如sinα 3~(1/2)cosα=2sin(α φ)和-sinα-3~(1/2)cosα=2sin(α φ)都有tgφ=3~(1/2),但显然两式是不相等的。因此,仅由角的正切来确定asinα bcosα=(a~2 b~2)~(1/2)sin(α φ)中的φ势必出错,这在学生的作业中是常见  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号