首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract

Twelve male university students were tested twice on each of three continuous max [Vdot]RO2 protocols for treadmill running, pedaling on a bicycle ergometer while seated, and pedaling on a bicycle ergometer while standing. A comparison of the results failed to reveal any differences among protocols for pulmonary ventilation (max [Vdot]RE). For max [Vdot]RO2 (both liters [mdot] minute-1 and ml [mdot] minute-1. kg-1) all differences were significant with the highest value associated with treadmill running, the intermediate with cycling in the standing position, and the lowest with cycling while seated. Max heart rate (HR) was significantly higher on the treadmill than on either bicycle protocol, and the respiratory exchange ratio (R) was higher on the sitting bicycle task than on the standing bicycle task. No other differences among protocols were significant. Although the reliability coefficients for all protocols (range was from r = .95 to r = .97) and the intercorrelation coefficients among protocols (range was r = .93 to r = .94) were quite high, the magnitude of the standard errors of estimate tended to limit the ability to predict a subject's max [Vdot]RO2 on the treadmill based upon his measured max [Vdot]RO2 employing either a sitting or standing bicycle protocol.  相似文献   

2.
Abstract

Percent body fat, ratings of perceived exertion and maximal oxygen consumption during a continuous running treadmill test were obtained on 127 high school female cross country runners. These young runners (x 15.6 yrs) were running approximately 25 miles per week at the time of testing. They had an average [Vdot]O2 max of 50.8 ml · min-1 and an HR max of 198.0 bpm. The mean percent body fat, as determined from hydrostatic weighing, was 15.4%. The onset of metabolic acidosis was estimated to occur at 78% of [Vdot]O2 max. A stepwise multiple regression with the 3000 meter run as the dependent variable indicated that max treadmill run time, weight relative [Vdot]O2 max and [Vdot] max entered the equation in that order, yielding an R of 0.67. Both HR and RPE increased with work intensity, but not at equal rates. These high school female runners had higher [Vdot]O2 max's than previously reported for this age group; however, they were considerably below these values reported for national caliber distance runners.  相似文献   

3.
Abstract

Nine lean (6.9%–19.3% body fat) and 12 moderately obese (31.6%–42.3% body fat) college men were compared in terms of maximum aerobic power, resting pulmonary function tests, and selected respiratory variables during a progressive bicycle ergometer test. The [Vdot]O2 max (1/min) was slightly higher (p > .05) in the obese group but significantly lower (p < .05) when expressed in cc/kg min or cc/kg FFBW min. Lower RV, ERV, and FRC data were observed in the obese group, but no differences were documented for tests of FVC or MVV. Higher values were displayed by the obese subjects for [Vdot]E, [Vdot]A, and tidal volume at rest and during each submaximal intensity of bicycle work. These observations appeared to be due to the obese subjects' higher energy expenditures, since no differences were documented in the ventilation equivalent ([Vdot]E/[Vdot]O2), the [Vdot]A/[Vdot]E ratio, or breathing frequency. It was concluded, within the limitations of the study, that the hypothesis of respiratory dysfunction in the moderately obese was not supported.  相似文献   

4.
Abstract

The purpose of this study was to investigate selected physiological changes that occurred with distance training in teenage females. Two groups of untrained teenage females were matched on [Vdot]O2 max, percent utilization of [Vdot]O 2 @ 9.66 km/hr, peak heart rate, and percent body fat. One group served as control (n = 9) while the other (n =10) underwent a 20-week training program designed to gradually increase the subjects' average mileage from 0 to 32.2 km per week. At the end of the 20 weeks, a MANOVA revealed significant mean differences within the trained group and no significant mean differences within the control group. The univariate analysis revealed that significant (p <0.05) mean differences found within the training group were for [Vdot]O 2 max (45.1 vs. 49.3 ml · kg –1 · min –1 ), percent utilization of [Vdot]O 2 @9.66 km/hr (76.5% vs. 67.5%), and economy VO 2 @9.66 km/hr (34.5vs.33.2 ml · kg –1 · min –1 ). Of the variables which exhibited significant training effects, percent utilization of [Vdot]O 2 max showed the greatest relative change, a 12.2% decrease, with [Vdot]O 2 max showing a 9.3% increase. The posttest results were similar to the research literature for training effects found for males and other age groups.  相似文献   

5.
Abstract

The purpose of the study was to determine the effects of 15, 30, and 45 min of conditioning on maximum performance and cardiorespiratory fitness variables, body composition, pulmonary function, and serum lipids. Subjects, ages 20 to 35, were 59 inmates at a California state prison. The conditioning included running and walking and was performed three days/week at approximately 85 to 90% max HR for 20 weeks. The distance covered per exercise session was approximately 1.75, 3.25, and 5.1 miles for the 15-, 30-, and 45-min groups, respectively.

Improvements in treadmill performance time. [Vdot]O2 max, max O2 pulse, diastolic blood pressure, and total skinfold fat were proportional to duration of the training session; i.e., the subjects training in the longer duration sessions showed the greater improvements. The control group showed no significant change during the same period. Compared to the control group, the 15-min group made significant reductions in resting HR, total skinfold fat, percent fat, and waist girth and increases in [Vdot]O2 max, max O2 pulse,[Vdot]E max, and treadmill performance time. Vital capacity, FEV1.0, and % FEV1.0 remained relatively unchanged in all four groups, as did serum cholesterol and triglycerides. The 45-min group improved significantly more than the 15-min group in treadmill time, [Vdot]O2 max, max O2 pulse, resting systolic and diastolic blood pressures, and percent fat. In general, comparisons between the 15- and 30-min groups and between the 30- and 45-min groups failed to yield statistically significant differences.  相似文献   

6.
Abstract

The purpose of this study was to assess the relationships among ventilatory threshold T(vent), running economy and distance running performance in a group (N=9) of trained experienced male runners with comparable maximum oxygen uptake ([Vdot]O2 max). Maximal oxygen uptake and submaximal steady state oxygen uptake were measured using open circuit spirometry during treadmill exercise. Ventilatory threshold was determined during graded treadmill exercise using non-invasive techniques, while distance running performance was assessed by the best finish time in two 10-kilometer (km) road races. The subjects averaged 33.8 minutes on the 10km runs, 68.6 ml · kg -1 · min -1 for [Vdot]O2 max, and 48.1 ml · kg -1 · min -1 for steady state [Vdot]O2 running at 243 meters · min -1. The T(vent) (first deviation from linearity of [Vdot]E, [Vdot]CO 2 ) occurred at an oxygen consumption of 41.9 ml · kg -1 · min -1. The relationship between running economy and performance was r = .51 (p>0.15) and the relationship between T(vent) and performance was r = .94 (p < 0.001). Applying stepwise multiple linear regression, the multiple R did not increase significantly with the addition of variables to the T(vent); however, the combination of [Vdot]O2 max, running economy and T(vent) was determined to account for the greatest amount of total variance (89%). These data suggest that among trained and experienced runners with similar [Vdot]O2 max, T(vent) can account for a large portion of the variance in performance during a 10km race.  相似文献   

7.
Abstract

Muscular and aerobic capacity changes resulting from three months of wrestling training were examined in a group of normally active 7- to 9-year-old boys (N = 23) who competed in an intramural league tournament. A nontraining group of twenty-two boys of similar age, height, and weight served as control subjects, and were studied during the same period of time. The subjects were measured for body dimensions and skinfolds, and were given measures of back lift, leg press, and arm endurance (dips and chins). They were also measured for [Vdot]E max, [Vdot]O 2 max, and HR max employing a progressive treadmill protocol. Results of ANCOVA analyses indicated that (1) the mean improvements in [Vdot]E max (2.93 1·min ?1 ) and in [Vdot]O 2 max (+ 6.6 ml·kg ?1 ·min ?1 ) were not significantly greater than control (p > .05), nor was HR max; (2) arm endurance improved significantly over control (p < .05), as did the leg press, but the back lift was not improved significantly (p > .05); (3) no significant change occurred in height, weight, or in some of skinfolds (p > .05), but the wrestlers were less endomorphic and more ectomorphic than their control counterparts, and were judged essentially equivalent in mesomorphy. It is concluded that wrestling training in young boys improves strength, but does not improve aerobic capacity more than one would expect to see in normal children of similar age and size.  相似文献   

8.
Abstract

The bradycardia effect of a 10-week jogging program was studied in 13 previously sedentary middle-aged subjects (seven women and six men). This response during standardized submaximal treadmill walking and leg cycling was related to changes in cardiac output ([Qdot]), stroke volume (SV), and arteriovenous oxygen differences (a-vO2 diff). Heart rate (HR) response was also studied during load carrying and arm cycling tasks, and a [Vdot]O2 max test was administered. All tests were repeated posttraining. The posttraining increases in [Vdot]O2 max (ml/kg × min-1) were 19.7% and 14.8% for the men and women respectively. Training also produced significant reductions in submaximal HR and Q during treadmill and leg cycling exercise. A-vO2 diff rose, while there were no changes in [Vdot]O2 during the submaximal work tasks, suggesting either altered blood flow or a greater capacity to utilize O2 by the working muscle. Both men and women showed significant reductions in HR during the arm cycling and load carrying as well. These data suggest that a jogging program can alter cardiovascular function in tasks other than running. The magnitude and direction of change showed no sex differences; therefore, it was also concluded that there are no differences in the trainability of previously sedentary middle-aged men and women.  相似文献   

9.
The aims of this study were to quantify the effects of factors such as mode of exercise, body composition and training on the relationship between heart rate and physical activity energy expenditure (measured in kJ?·?min?1) and to develop prediction equations for energy expenditure from heart rate. Regularly exercising individuals (n = 115; age 18?–?45 years, body mass 47?–?120?kg) underwent a test for maximal oxygen uptake ([Vdot]O2max test), using incremental protocols on either a cycle ergometer or treadmill; [Vdot]O2max ranged from 27 to 81?ml?·?kg?1?·?min?1. The participants then completed three steady-state exercise stages on either the treadmill (10?min) or the cycle ergometer (15?min) at 35%, 62% and 80% of [Vdot]O2max, corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and respiratory exchange ratio data were collected during each stage. A mixed-model analysis identified gender, heart rate, weight, [Vdot]2max and age as factors that best predicted the relationship between heart rate and energy expenditure. The model (with the highest likelihood ratio) was used to estimate energy expenditure. The correlation coefficient (r) between the measured and estimated energy expenditure was 0.913. The model therefore accounted for 83.3% (R 2) of the variance in energy expenditure in this sample. Because a measure of fitness, such as [Vdot]O2max, is not always available, a model without [Vdot]O2max included was also fitted. The correlation coefficient between the measured energy expenditure and estimates from the mixed model without [Vdot]O2max was 0.857. It follows that the model without a fitness measure accounted for 73.4% of the variance in energy expenditure in this sample. Based on these results, we conclude that it is possible to estimate physical activity energy expenditure from heart rate in a group of individuals with a great deal of accuracy, after adjusting for age, gender, body mass and fitness.  相似文献   

10.
Abstract

The effect of caffeine ingestion on submaximal endurance performance of 15 females and 13 males was investigated. After completing a [Vdot]O 2 max test, each subject performed two submaximal cycling tests at approximately 75% of [Vdot]O 2 max to exhaustion. For the caffeine (C) trials, 300 mg of caffeine was added to 250 ml of decaffeinated coffee and ingested one hour prior to the exercise. The decaffeinated (D) trial involved consuming 250 ml of decaffeinated coffee an hour prior to the test. The C and D trials were administered randomly using a standard double blind design. Physiological parameters were monitored each 9, 10, and 11 minute intervals throughout each trial and averaged. As expected the [Vdot]O 2 (L · min ?1 ), [Vdot]E and work outputs (kgm) were significantly (p < 0.001) higher for the males than the females. All other variables, time to exhaustion, [Vdot]O 2 (ml · kg · min ?1 ), R, HR, and rating of perceived exertion (RPE) were not significantly (p > 0.05) different between the sexes for either the C or D trials. Time to exhaustion was 14.4 and 3.1% longer for the C trials for the females and males, respectively, however these increases were not significant (p > 0.05). Furthermore, there were no significant differences (p > 0.05) for any of the measured variables during successive 10 minute work intervals between the C and D trials for either sex. These results do not support the general use of caffeine in moderate amounts as an ergogenic aid for either males or females, but from a practical point it appears that caffeine may have an ergogenic effect on specific individuals.  相似文献   

11.
Abstract

Since [Vdot]O2 max (ml/minute · kg body weight) is known to be the primary determinant of work capacity in weight-bearing exercise, the quantification of sex-specific factors influencing aerobic capacity is necessary if appropriate work capacity and endurance performance expectations and standards are to be developed for men and women. Yet, due to varying procedures and sample characteristics, large discrepancies exist among studies concerning the magnitude of the sex difference in [Vdot]O2 max. The purpose of this article is to provide an integrative review of the research comparing [Vdot]O2 max in men and women using the meta-analytic strategy proposed by Glass (1976). An overall estimate of the magnitude of the sex effect for each of three expressions of [Vdot]O2 max is provided. When removing the variability in aerobic capacity due to body size and body fatness, the magnitude of difference in [Vdot]O2 max between men and women is substantially reduced. When expressed relative to fat-free weight, the [Vdot]O2 max values of the males are, on the average, 12 to 15% higher than those of the females. Sex-specific differences in relative hemoglobin content may be responsible for a part of this remaining difference. However, a substantial portion of the sex difference in [Vdot]O2 max (ml/minute · kg fat-free weight) is probably attributable to gender-associated differences in level of physical activity/conditioning. The ability to clearly identify the sex-related components of aerobic capacity is an objective warranting further investigation.  相似文献   

12.
Abstract

The aim of this study was to examine the exercise workload of the 3rd Series of National Broadcast Calisthenics for Elementary and Middle School Students. Altogether, 120 students aged 11–17 years were randomly selected from elementary and middle schools to participate in the study. Each participant performed a cycle ergometer test to obtain maximum oxygen uptake ([Vdot]O2max) and maximum heart rate values. In the laboratory, oxygen uptake ([Vdot]O2), metabolic equivalents (METs), and heart rate were recorded continuously throughout a calisthenics session performed by the participants. Ratings of perceived exertion (RPE) were also recorded. Throughout the calisthenics session, mean percentage of [Vdot]O2 reserve varied from 30.7% to 41.2%, mean percentage of heart rate reserve from 39.0% to 56.9%, and mean RPE from 9.0 to 10.4. The mean energy cost during most of the segments across the four routines of calisthenics was significantly higher (P < 0.05) than 3.0 METs. In conclusion, the exercise workload of the 3rd Series of National Broadcast Calisthenics for Elementary and Middle School Students session varied from low to moderate. As part of a school-based physical activity intervention project, calisthenics would help to promote an active lifestyle and health in children and adolescents.  相似文献   

13.
Abstract

Eighty-seven female masters swimmers ranging in age from 20 to 69 were selected for a detailed study of their body composition and physiological responses at rest and during exercise. These women were then placed into two subsets, a highly trained group and a not highly trained group, on the basis of the frequency, duration, and intensity of swimming workouts. Significant differences were detected when comparing the highly trained and not highly trained subjects on measures of weight, body density, percent fat and lean body weight (p<.05). Significant differences which favored the highly trained group were also seen when comparing these same two groups for [Vdot]E max, [Vdot]O2 max (1/min), [Vdot]O2 max (ml·kg–1·min–1), [Vdot]O2 max (ml·kg·LBW–1·min–1), O2 pulse (ml·kg–1·beat–1), and O2 pulse (ml·kg·LBW–1). Both the highly trained and not highly trained swimmers were considerably lower in percent fat than previously reported data for normal untrained women of similar ages. In both groups, however, percent fat across age levels within each training group showed significant increases at approximately 40 years of age (p<.05). In the highly trained swimmers, [Vdot]O2 max (ml·kg–1·min–1) decreased at a mean rate of about 7% per decade, while in the not highly trained swimmers the decline was approximately 8% per decade. It appears that the rate of decline in [Vdot]O2 max in women with aging may be independent of training status.  相似文献   

14.
Abstract

The purpose of this study was to determine the relationship between female distance running performance on a 10 km road race and body composition, maximal aerobic power ([Vdot]O2 max ), running economy (steady-state [Vdot]O2 at standardized speeds), and the fractional utilization of [Vdot]O2max at submaximal speeds (% [Vdot]O2max ). The subjects were 14 trained and competition–experienced female runners. The subjects averaged 43.7 min on the 10 km run, 53.0 ml · kg?1 · min?1 on [Vdot]O2max , and 33.9, 37.7, and 41.8 ml · kg?1 · min?1 for steady-state [Vdot]O2 at three standardized running paces (177, 196, and 215 m · min?1). The mean values for fractional utilization of aerobic capacity for these three submaximal speeds were 64.3, 71.4, and 79.3% [Vdot]O2max , respectively. Significant (p < 0.01) relationships with performance were found for [Vdot]O2max (r = ?0.66) and % [Vdot]O2max at a standardized speed (r = 0.65). No significant (p > 0.05) relationships were found between running performance and either running economy or relative body fat. As with male heterogeneous groups, trained female road racing performance is significantly related to [Vdot]O2max and % [Vdot]O2max , but not related to body composition or running economy. It was further concluded that on a 10 km road race, trained females operate at a % [Vdot]O2max similar to that of their trained male counterparts.  相似文献   

15.
Abstract

The purpose of this investigation was to evaluate and quantify physiological differences among groups of distance runners. The subjects included 20 elite distance runners (8 marathon, 12 middle-long distance) and 8 good runners. Working capacity and cardiorespiratory function were determined by submaximal and maximal treadmill tests, and body composition by hydrostatic weighing. The variables studied were maximum oxygen uptake ([Vdot]O2 max), [Vdot]O2 submax, lactic acid submax, lean body weight, and fat weight. MANOVA showed that the good runners differed from the elite runners (p < 0.01) and the elite marathon runners differed from the elite middle-long distance runners (p < 0.05). Discriminant analysis showed that both functions were significant. The first was a general physiological efficiency factor that separated the good and elite runners. The second separated the elite marathon and middle-long distance groups. The second function showed that the marathon runners had lower lactic acid submax values. The middle-long distance runners had higher [Vdot]O2 max values. Classification analysis was used to evaluate the accuracy of the discriminant analysis; 80% of the elite runners were correctly classified as marathon or middle-long distance runners. The discriminant functions were used to develop a multivariate scaling model for evaluating distance runners. Two premier runners, one marathoner (F. Shorter) and one middle-long distance runner (S. Prefontaine), were found to be at the extremes of the scale. The data showed that the discriminant functions provided a valid model for evaluating differences among elite distance runners.  相似文献   

16.
Abstract

Sixteen men were studied during 6-min bouts of motorized treadmill running at 230 m · min–1 and 0% and 4% grade to compare [Vdot]O2 while using freely chosen stride lengths (CSL) and stride lengths approximately 8% shorter (SSL) and longer (LSL) than CSL. The study also attempted to determine whether stride length variations of these proportions altered [Vdot]O2 differently at the two grades. CSL were greater (p<.05) at 0% than 4% with mean values of 133.5 and 131.5 cm, respectively. Two-way ANOVA (Stride x Grade) with repeated measures yielded significant F values (p<.05) for the main effects of both stride length and grade but not for interaction between the two factors. Mean [Vdot]O2 values were 44.95 and 56.80 ml · kg1 · min–1 at 0% and 4% grade, respectively. The Tukey w procedure was used for comparing the main effect means across both grades for the three stride lengths. These means were 50.94, 49.88, and 51.80 ml · kg1 · min–1 for SSL, CSL, and LSL, respectively, with the CSL mean significantly less than the SSL and LSL means (p<.05). Stride length variations of approximately ±8% did not alter [Vdot]O2 differently at the two grades, and although [Vdot]O2 for SSL and LSL was not different, [Vdot]O2 was significantly (p<.05) increased by 2.1% for SSL and 3.8% for LSL. Not all individual patterns followed the group norm, however, in that three subjects were more economical with short stride lengths and two were more economical with longer strides.  相似文献   

17.
Abstract

The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake ([Vdot]O2max) and distance travelled with peak oxygen uptake ([Vdot]O2peak) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine [Vdot]O2peak, and the MSFT on an indoor wooden basketball court. Mean ergometer [Vdot]O2peak was 2.66 litres · min?1 (s = 0.49) and peak heart rate was 188 beats · min?1 (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats · min?1 (s = 11). Low to moderate correlations (ρ = 0.39 to 0.58; 95% confidence interval [CI]: ?0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer [Vdot]O2peak. There was a mean bias of ?1.9 beats · min?1 (95% CI: ?5.9 to 2.0) and standard error of measurement of 6.6 beats · min?1 (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT [Vdot]O2peak values revealed a large mean systematic bias of 15.3 ml · kg?1 · min?1 (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml · kg?1 · min?1 (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats · min?1; 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.  相似文献   

18.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

19.
Abstract

The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; [Vdot]O2peak 61 ml · kg?1 · min?1, s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70%[Vdot]O2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

20.
Abstract

The purpose of this study was to determine the effects of a Nautilus circuit weight training program on muscular strength and maximal oxygen uptake ([Vdot]O 2 max) by comparing these effects to those produced by adhering to either a free weight (FW) strength training program or a running (R) program. Male college students who voluntarily enrolled in either a FW training class (n = 11), a Nautilus (N) circuit weight training class (n= 12), or a R conditioning class (n= 13) were subjects for this investigation. All groups participated in their respective programs 3 days per week for 10 weeks. Strength was assessed using a Cybex II isokinetic dynamometer set at an angular velocity of 60° · s ?1 and a damping of 2. The FW group served as the control group for the assessment of [Vdot]O 2 max changes, while the R group served as controls for the assessment of strength differences. ANCOVA revealed that the N and R groups experienced significant (p < .01) increases in [Vdot]O 2 max expressed in L · min ?1 (10.9 and 11.4%), ml · kg ?1 · min ?1 (10.8 and 11.7%), and ml · kgLBW ?1 · min ?1 (7.1 and 7.5%) when compared to the FW group. There were no significant differences between the N and R groups. There were no significant differences among groups in final peak torque values (after covariance), and torque at the beginning and end of the range of motion for the knee extensors, knee flexors, elbow extensors, and elbow flexors. In general, isokinetic strength values elicited by the N group compared favorably to those generated by the FW group. It was concluded that for a training period of short duration, Nautilus circuit weight training appears to be an equally effective alternative to standard free weight (strength) and aerobic (endurance) training programs for untrained individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号