首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this study were to quantify the effects of factors such as mode of exercise, body composition and training on the relationship between heart rate and physical activity energy expenditure (measured in kJ?·?min?1) and to develop prediction equations for energy expenditure from heart rate. Regularly exercising individuals (n = 115; age 18?–?45 years, body mass 47?–?120?kg) underwent a test for maximal oxygen uptake ([Vdot]O2max test), using incremental protocols on either a cycle ergometer or treadmill; [Vdot]O2max ranged from 27 to 81?ml?·?kg?1?·?min?1. The participants then completed three steady-state exercise stages on either the treadmill (10?min) or the cycle ergometer (15?min) at 35%, 62% and 80% of [Vdot]O2max, corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and respiratory exchange ratio data were collected during each stage. A mixed-model analysis identified gender, heart rate, weight, [Vdot]2max and age as factors that best predicted the relationship between heart rate and energy expenditure. The model (with the highest likelihood ratio) was used to estimate energy expenditure. The correlation coefficient (r) between the measured and estimated energy expenditure was 0.913. The model therefore accounted for 83.3% (R 2) of the variance in energy expenditure in this sample. Because a measure of fitness, such as [Vdot]O2max, is not always available, a model without [Vdot]O2max included was also fitted. The correlation coefficient between the measured energy expenditure and estimates from the mixed model without [Vdot]O2max was 0.857. It follows that the model without a fitness measure accounted for 73.4% of the variance in energy expenditure in this sample. Based on these results, we conclude that it is possible to estimate physical activity energy expenditure from heart rate in a group of individuals with a great deal of accuracy, after adjusting for age, gender, body mass and fitness.  相似文献   

2.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

3.
Abstract

The purpose of this study was to determine the relationship between female distance running performance on a 10 km road race and body composition, maximal aerobic power ([Vdot]O2 max ), running economy (steady-state [Vdot]O2 at standardized speeds), and the fractional utilization of [Vdot]O2max at submaximal speeds (% [Vdot]O2max ). The subjects were 14 trained and competition–experienced female runners. The subjects averaged 43.7 min on the 10 km run, 53.0 ml · kg?1 · min?1 on [Vdot]O2max , and 33.9, 37.7, and 41.8 ml · kg?1 · min?1 for steady-state [Vdot]O2 at three standardized running paces (177, 196, and 215 m · min?1). The mean values for fractional utilization of aerobic capacity for these three submaximal speeds were 64.3, 71.4, and 79.3% [Vdot]O2max , respectively. Significant (p < 0.01) relationships with performance were found for [Vdot]O2max (r = ?0.66) and % [Vdot]O2max at a standardized speed (r = 0.65). No significant (p > 0.05) relationships were found between running performance and either running economy or relative body fat. As with male heterogeneous groups, trained female road racing performance is significantly related to [Vdot]O2max and % [Vdot]O2max , but not related to body composition or running economy. It was further concluded that on a 10 km road race, trained females operate at a % [Vdot]O2max similar to that of their trained male counterparts.  相似文献   

4.
Abstract

Eighty-seven female masters swimmers ranging in age from 20 to 69 were selected for a detailed study of their body composition and physiological responses at rest and during exercise. These women were then placed into two subsets, a highly trained group and a not highly trained group, on the basis of the frequency, duration, and intensity of swimming workouts. Significant differences were detected when comparing the highly trained and not highly trained subjects on measures of weight, body density, percent fat and lean body weight (p<.05). Significant differences which favored the highly trained group were also seen when comparing these same two groups for [Vdot]E max, [Vdot]O2 max (1/min), [Vdot]O2 max (ml·kg–1·min–1), [Vdot]O2 max (ml·kg·LBW–1·min–1), O2 pulse (ml·kg–1·beat–1), and O2 pulse (ml·kg·LBW–1). Both the highly trained and not highly trained swimmers were considerably lower in percent fat than previously reported data for normal untrained women of similar ages. In both groups, however, percent fat across age levels within each training group showed significant increases at approximately 40 years of age (p<.05). In the highly trained swimmers, [Vdot]O2 max (ml·kg–1·min–1) decreased at a mean rate of about 7% per decade, while in the not highly trained swimmers the decline was approximately 8% per decade. It appears that the rate of decline in [Vdot]O2 max in women with aging may be independent of training status.  相似文献   

5.
Abstract

The purpose of this study was to investigate selected physiological changes that occurred with distance training in teenage females. Two groups of untrained teenage females were matched on [Vdot]O2 max, percent utilization of [Vdot]O 2 @ 9.66 km/hr, peak heart rate, and percent body fat. One group served as control (n = 9) while the other (n =10) underwent a 20-week training program designed to gradually increase the subjects' average mileage from 0 to 32.2 km per week. At the end of the 20 weeks, a MANOVA revealed significant mean differences within the trained group and no significant mean differences within the control group. The univariate analysis revealed that significant (p <0.05) mean differences found within the training group were for [Vdot]O 2 max (45.1 vs. 49.3 ml · kg –1 · min –1 ), percent utilization of [Vdot]O 2 @9.66 km/hr (76.5% vs. 67.5%), and economy VO 2 @9.66 km/hr (34.5vs.33.2 ml · kg –1 · min –1 ). Of the variables which exhibited significant training effects, percent utilization of [Vdot]O 2 max showed the greatest relative change, a 12.2% decrease, with [Vdot]O 2 max showing a 9.3% increase. The posttest results were similar to the research literature for training effects found for males and other age groups.  相似文献   

6.
Abstract

Eight male and eight female runners were matched on performance in a 24.2 km (15 mile) road race (X time ± SD = 115.1 ± 2.2 min for females, 115.8 ± 3.2 min for males). All subjects completed a graded treadmill run during which [Vdot]O 2 and heart rate (HR) were monitored at several submaximal running speeds and at maximal exercise. Blood samples, collected at rest and 3 min after maximal exercise, were analyzed for hematocrit and hemoglobin (Hb), lactic acid (LA) and 2,3-diphosphoglyceric acid (2,3-DPG) concentrations. Body composition was assessed via hydrostatic weighing. Group comparisons revealed that the males were taller, heavier, and higher in Hb than the females (p < .05). The sexes did not differ significantly in percentage of body fat or in [Vdot]O 2 (ml · kg –1 · min –1 ), HR, respiratory exchange ratio, or ventilatory equivalent of oxygen during submaximal running or at maximal exercise (p > .05). 2,3-DPG was higher in the females when expressed relative to Hb (p < .05). These data indicate that female and male distance runners of equal performance levels are very similar in body composition and in metabolic and cardiorespiratory responses to exercise. The higher Hb observed in males may have been offset in part by the females' higher 2,3-DPG/Hb ratio.  相似文献   

7.
Abstract

Since [Vdot]O2 max (ml/minute · kg body weight) is known to be the primary determinant of work capacity in weight-bearing exercise, the quantification of sex-specific factors influencing aerobic capacity is necessary if appropriate work capacity and endurance performance expectations and standards are to be developed for men and women. Yet, due to varying procedures and sample characteristics, large discrepancies exist among studies concerning the magnitude of the sex difference in [Vdot]O2 max. The purpose of this article is to provide an integrative review of the research comparing [Vdot]O2 max in men and women using the meta-analytic strategy proposed by Glass (1976). An overall estimate of the magnitude of the sex effect for each of three expressions of [Vdot]O2 max is provided. When removing the variability in aerobic capacity due to body size and body fatness, the magnitude of difference in [Vdot]O2 max between men and women is substantially reduced. When expressed relative to fat-free weight, the [Vdot]O2 max values of the males are, on the average, 12 to 15% higher than those of the females. Sex-specific differences in relative hemoglobin content may be responsible for a part of this remaining difference. However, a substantial portion of the sex difference in [Vdot]O2 max (ml/minute · kg fat-free weight) is probably attributable to gender-associated differences in level of physical activity/conditioning. The ability to clearly identify the sex-related components of aerobic capacity is an objective warranting further investigation.  相似文献   

8.
The purpose of this study was to develop a multiple linear regression model to predict treadmill VO2max scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill. The submaximal cycle protocol required participants to achieve a steady-state heart rate equal to at least 70% of age-predicted maximum heart rate (220-age), while the maximal treadmill graded exercise test required participants to exercise to volitional fatigue. Relevant submaximal cycle ergometer test data included a mean (±SD) ending steady-state heart rate and ending workrate equal to 164.2 ± 13.0 bpm and 115.3 ± 27.0 watts, respectively. Relevant non-exercise data included a mean (±SD) body mass (kg), perceived functional ability score, and physical activity rating score of 74.2 ± 15.1, 15.7 ± 4.3, and 4.7 ± 2.1, respectively. Multiple linear regression was used to generate the following prediction of (R = .91, standard error of estimates (SEE) = 3.36 ml·kg?1·min?1): VO2max = 54.513 + 9.752 (gender, 1 = male, 0 = female) – .297 (body mass, kg) + .739 (perceived functional ability, 2–26) + .077 (work rate, watts) – .072 (steady-state heart rate). Each predictor variable was statistically significant (p < .05) with beta weights for gender, body mass, perceived functional ability, exercise workrate, and steady-state heart rate equal to .594, –.544, .388, .305, and –.116, respectively. The predicted residual sums of squares (PRESS) statistics reflected minimal shrinkage (RPRESS = .90, SEEPRESS = 3.56 ml·kg?1·min?1) for the multiple linear regression model. In summary, the submaximal cycle ergometer protocol and accompanying prediction model yield relatively accurate VO2max estimates in healthy college-aged participants using both exercise and non-exercise data.  相似文献   

9.
Cardiorespiratory and body composition changes were evaluated in 25 sedentary females, aged 18 to 30 years, following 12 weeks of aerobic dance training (3 days a week, 45 min a session). Fifteen subjects, from the same population, comprised a control group: they maintained their normal activity and dietary habits over the course of the study. Analysis of variance of the values for selected cardiorespiratory responses revealed that the aerobic dance programme produced training effects in the experimental group. These training effects were indicated by significant improvements in O2 pulse, V E, heart rate and perceived exertion during submaximal exercise. Significant improvements were also noted in VO2 max, maximal O2pulse, V E max, maximal heart rate and maximal running time on the treadmill. Additionally, increases in lean body mass and body density, together with decreases in percentage body fat and the sum of four skinfold thicknesses were found to be significant for the experimental group. No significant improvements in any of these variables were found for the control group. It was concluded that this 12‐week aerobic dance programme was successful in promoting beneficial changes in cardiorespiratory fitness and body composition.  相似文献   

10.
Abstract

The aims of the study were to modify the training impulse (TRIMP) method of quantifying training load for use with intermittent team sports, and to examine the relationship between this modified TRIMP (TRIMPMOD) and changes in the physiological profile of team sport players during a competitive season. Eight male field hockey players, participating in the English Premier Division, took part in the study (mean±s: age 26±4 years, body mass 80.8±5.2 kg, stature 1.82±0.04 m). Participants performed three treadmill exercise tests at the start of the competitive season and mid-season: a submaximal test to establish the treadmill speed at a blood lactate concentration of 4 mmol · l?1; a maximal incremental test to determine maximal oxygen uptake ([Vdot]O2max) and peak running speed; and an all-out constant-load test to determine time to exhaustion. Heart rate was recorded during all training sessions and match-play, from which TRIMPMOD was calculated. Mean weekly TRIMPMOD was correlated with the change in [Vdot]O2max and treadmill speed at a blood lactate concentration of 4 mmol · l?1 from the start of to mid-season (P<0.05). The results suggest that TRIMPMOD is a means of quantifying training load in team sports and can be used to prescribe training for the maintenance or improvement of aerobic fitness during the competitive season.  相似文献   

11.
Abstract

Muscular and aerobic capacity changes resulting from three months of wrestling training were examined in a group of normally active 7- to 9-year-old boys (N = 23) who competed in an intramural league tournament. A nontraining group of twenty-two boys of similar age, height, and weight served as control subjects, and were studied during the same period of time. The subjects were measured for body dimensions and skinfolds, and were given measures of back lift, leg press, and arm endurance (dips and chins). They were also measured for [Vdot]E max, [Vdot]O 2 max, and HR max employing a progressive treadmill protocol. Results of ANCOVA analyses indicated that (1) the mean improvements in [Vdot]E max (2.93 1·min ?1 ) and in [Vdot]O 2 max (+ 6.6 ml·kg ?1 ·min ?1 ) were not significantly greater than control (p > .05), nor was HR max; (2) arm endurance improved significantly over control (p < .05), as did the leg press, but the back lift was not improved significantly (p > .05); (3) no significant change occurred in height, weight, or in some of skinfolds (p > .05), but the wrestlers were less endomorphic and more ectomorphic than their control counterparts, and were judged essentially equivalent in mesomorphy. It is concluded that wrestling training in young boys improves strength, but does not improve aerobic capacity more than one would expect to see in normal children of similar age and size.  相似文献   

12.
Abstract

The purpose of this study was to assess the relationships among ventilatory threshold T(vent), running economy and distance running performance in a group (N=9) of trained experienced male runners with comparable maximum oxygen uptake ([Vdot]O2 max). Maximal oxygen uptake and submaximal steady state oxygen uptake were measured using open circuit spirometry during treadmill exercise. Ventilatory threshold was determined during graded treadmill exercise using non-invasive techniques, while distance running performance was assessed by the best finish time in two 10-kilometer (km) road races. The subjects averaged 33.8 minutes on the 10km runs, 68.6 ml · kg -1 · min -1 for [Vdot]O2 max, and 48.1 ml · kg -1 · min -1 for steady state [Vdot]O2 running at 243 meters · min -1. The T(vent) (first deviation from linearity of [Vdot]E, [Vdot]CO 2 ) occurred at an oxygen consumption of 41.9 ml · kg -1 · min -1. The relationship between running economy and performance was r = .51 (p>0.15) and the relationship between T(vent) and performance was r = .94 (p < 0.001). Applying stepwise multiple linear regression, the multiple R did not increase significantly with the addition of variables to the T(vent); however, the combination of [Vdot]O2 max, running economy and T(vent) was determined to account for the greatest amount of total variance (89%). These data suggest that among trained and experienced runners with similar [Vdot]O2 max, T(vent) can account for a large portion of the variance in performance during a 10km race.  相似文献   

13.
Abstract

The purpose of this study was to compare the physiological responses of Nordic walking on a specially designed treadmill and Nordic walking on a level over-ground surface. Thirteen participants completed three 1-h Nordic walking training sessions. Following the training sessions, each participant performed two 1600-m over-ground Nordic walking trials at a self-selected pace. Each participant then completed two 1600-m Nordic walking treadmill trials on a Hammer Nordic Walking XTR Treadmill®, at the mean walking speed of their two over-ground Nordic walking trials. Breath-by-breath analysis of oxygen uptake ([Vdot]O2) and heart rate was performed during each trial. Caloric expenditure was calculated using the [Vdot]O2. Rating of perceived exertion (RPE) was assessed at the end of each trial. We found no significant differences in physiological variables collected during the two over-ground Nordic walking trials or the two treadmill Nordic walking trials. Mean walking speed was 106.96±11.49 m · min?1. Mean heart rate during treadmill walking (99±13 beats · min?1) was 22% lower than that during the over-ground condition (126±17 beats · min?1). Mean [Vdot]O2 and mean caloric expenditure were also lower during treadmill walking (15.18±3.81 ml · min?1 · kg?1, 0.08±0.02 kcal · min?1 · kg?1) than over-ground walking (24.16±4.89 ml · min?1 · kg?1, 0.12±0.02 kcal · min?1 · kg?1). Analysis of variance demonstrated that all variables were significantly higher during over-ground Nordic walking (P<0.001). A Mann-Whitney U-test demonstrated that the RPE for over-ground Nordic walking was greater than that for treadmill Nordic walking (P=0.02). Thus over-ground Nordic walking created a greater physiological stress than treadmill Nordic walking performed at the same speed and distance. The reason for this difference may have been the relatively narrow walking and poling decks on the treadmill, which made it difficult for the participants to place their poles correctly and maintain a consistent walking pattern. This would decrease the contribution of the arm muscles to overall oxygen consumption. In conclusion, the Hammer Nordic Walking XTR Treadmill® does not replicate the physiological stress of over-ground Nordic walking. Increasing the width of the decks could eliminate the discrepancy.  相似文献   

14.
Abstract

The aim of the study was to compare physiological responses between runners adapted and not adapted to deep water running at maximal intensity and the intensity equivalent to the ventilatory threshold. Seventeen runners, either adapted (n = 10) or not adapted (n = 7) to deep water running, participated in the study. Participants in both groups undertook a maximal treadmill running and deep water running graded exercise test in which cardiorespiratory variables were measured. Interactions between adaptation (adapted vs. non-adapted) and condition (treadmill running vs. deep water running) were analysed. The main effects of adaptation and condition were also analysed in isolation. Runners adapted to deep water running experienced less of a reduction in maximum oxygen consumption ([Vdot]O2max) in deep water running compared with treadmill running than runners not adapted to deep water running. Maximal oxygen consumption, maximal heart rate, maximal ventilation, [Vdot]O2 at the ventilatory threshold, heart rate at the ventilatory threshold, and ventilation at the ventilatory threshold were significantly higher during treadmill than deep water running. Therefore, we conclude that adaptation to deep water running reduces the difference in [Vdot]O2max between the two modalities, possibly due to an increase in muscle recruitment. The results of this study support previous findings of a lower maximal and submaximal physiological response on deep water running for most of the measured parameters.  相似文献   

15.
The aims of this study were: (1) to identify the exercise intensity that corresponds to the maximal lactate steady state in adolescent endurance-trained runners; (2) to identify any differences between the sexes; and (3) to compare the maximal lactate steady state with commonly cited fixed blood lactate reference parameters. Sixteen boys and nine girls volunteered to participate in the study. They were first tested using a stepwise incremental treadmill protocol to establish the blood lactate profile and peak oxygen uptake ([Vdot]O2). Running speeds corresponding to fixed whole blood lactate concentrations of 2.0, 2.5 and 4.0?mmol?·?l?1 were calculated using linear interpolation. The maximal lactate steady state was determined from four separate 20-min constant-speed treadmill runs. The maximal lactate steady state was defined as the fastest running speed, to the nearest 0.5?km?·?h?1, where the change in blood lactate concentration between 10 and 20?min was?<0.5?mmol?·?l?1. Although the boys had to run faster than the girls to elicit the maximal lactate steady state (15.7 vs 14.3?km?·?h?1, P?<0.01), once the data were expressed relative to percent peak [Vdot]O2 (85 and 85%, respectively) and percent peak heart rate (92 and 94%, respectively), there were no differences between the sexes (P?>0.05). The running speed and percent peak [Vdot]O2 at the maximal lactate steady state were not different to those corresponding to the fixed blood lactate concentrations of 2.0 and 2.5?mmol?·?l?1 (P?>0.05), but were both lower than those at the 4.0?mmol?·?l?1 concentration (P?<0.05). In conclusion, the maximal lactate steady state corresponded to a similar relative exercise intensity as that reported in adult athletes. The running speed, percent peak [Vdot]O2 and percent peak heart rate at the maximal lactate steady state are approximated by the fixed blood lactate concentration of 2.5?mmol?·?l?1 measured during an incremental treadmill test in boys and girls.  相似文献   

16.
The purpose of this study was to provide a more detailed analysis of performance in cross-country skiing by combining findings from a differential global positioning system (dGPS), metabolic gas measurements, speed in different sections of a ski-course and treadmill threshold data. Ten male skiers participated in a freestyle skiing field test (5.6?km), which was performed with dGPS and metabolic gas measurements. A treadmill running threshold test was also performed and the following parameters were derived: anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio = 1, onset of blood lactate accumulation and peak oxygen uptake ([Vdot]O2peak). The combined dGPS and metabolic gas measurements made detailed analysis of performance possible. The strongest correlations between the treadmill data and final skiing field test time were for [Vdot]O2peak (l?·?min?1), respiratory exchange ratio = 1 (l?·?min?1) and onset of blood lactate accumulation (l?·?min?1) (r = ?0.644 to ??0.750). However, all treadmill test data displayed stronger associations with speed in different stretches of the course than with final time, which stresses the value of a detailed analysis of performance in cross-country skiing. Mean oxygen uptake ([Vdot]O2) in a particular stretch in relation to speed in the same stretch displayed its strongest correlation coefficients in most stretches when [Vdot]O2 was presented in units litres per minute, rather than when [Vdot]O2 was normalized to body mass (ml?·?kg?1?·?min?1 and ml?·?min?1?·?kg?2/3). This suggests that heavy cross-country skiers have an advantage over their lighter counterparts. In one steep uphill stretch, however, [Vdot]O2 (ml?·?min?1?·?kg?2/3) displayed the strongest association with speed, suggesting that in steep uphill sections light skiers could have an advantage over heavier skiers.  相似文献   

17.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

18.
Abstract

Sixteen men were studied during 6-min bouts of motorized treadmill running at 230 m · min–1 and 0% and 4% grade to compare [Vdot]O2 while using freely chosen stride lengths (CSL) and stride lengths approximately 8% shorter (SSL) and longer (LSL) than CSL. The study also attempted to determine whether stride length variations of these proportions altered [Vdot]O2 differently at the two grades. CSL were greater (p<.05) at 0% than 4% with mean values of 133.5 and 131.5 cm, respectively. Two-way ANOVA (Stride x Grade) with repeated measures yielded significant F values (p<.05) for the main effects of both stride length and grade but not for interaction between the two factors. Mean [Vdot]O2 values were 44.95 and 56.80 ml · kg1 · min–1 at 0% and 4% grade, respectively. The Tukey w procedure was used for comparing the main effect means across both grades for the three stride lengths. These means were 50.94, 49.88, and 51.80 ml · kg1 · min–1 for SSL, CSL, and LSL, respectively, with the CSL mean significantly less than the SSL and LSL means (p<.05). Stride length variations of approximately ±8% did not alter [Vdot]O2 differently at the two grades, and although [Vdot]O2 for SSL and LSL was not different, [Vdot]O2 was significantly (p<.05) increased by 2.1% for SSL and 3.8% for LSL. Not all individual patterns followed the group norm, however, in that three subjects were more economical with short stride lengths and two were more economical with longer strides.  相似文献   

19.
Abstract

The main aim of this study was to determine whether the use of an imposed or freely chosen crank rate would influence submaximal and peak physiological responses during arm crank ergometry. Fifteen physically active men participated in the study. Their mean age, height, and body mass were 25.9 (s = 6.2) years, 1.80 (s = 0.10) m, and 78.4 (s = 6.1) kg, respectively. The participants performed two incremental peak oxygen consumption ([Vdot]O2peak) tests using an electronically braked ergometer. One test was performed using an imposed crank rate of 80 rev · min?1, whereas in the other the participants used spontaneously chosen crank rates. The order in which the tests were performed was randomized, and they were separated by at least 2 days. Respiratory data were collected using an on-line gas analysis system, and fingertip capillary blood samples (~20 μl) were collected for the determination of blood lactate concentration. Heart rate was also recorded throughout the tests. Time to exhaustion was measured and peak aerobic power calculated. Submaximal data were analysed using separate two-way repeated-measures analyses of variance, while differences in peak values were analysed using separate paired t-tests. Variations in spontaneously chosen crank rate were assessed using a one-way analysis of variance with repeated measures. Agreement between the crank rate strategies for the assessment of peak values was examined by calculating intra-class correlation coefficients (ICC) and 95% limits of agreement (95% LoA). While considerable between-participant variations in spontaneously chosen crank rate were observed, the mean value was not different (P > 0.05) from the imposed crank rate of 80 rev · min?1 at any point. No differences (P > 0.05) were observed for submaximal data between crank strategies. Furthermore, mean peak minute power [158 (s = 20) vs. 158 (s = 18) W], time to exhaustion [739 (s = 118) vs. 727 (s = 111) s], and [Vdot]O2peak[3.09 (s = 0.38) vs. 3.04 (s = 0.34) l · min?1] were similar for the imposed and spontaneously chosen crank rates, respectively. However, the agreement for the assessment of [Vdot]O2peak (ICC = 0.78; 95% LoA = 0.04 ± 0.50 l · min?1) between the cranking strategies was considered unacceptable. Our results suggest that either an imposed or spontaneously chosen crank rate strategy can be used to examine physiological responses during arm crank ergometry, although it is recommended that the two crank strategies should not be used interchangeably.  相似文献   

20.
Abstract

Percent body fat, ratings of perceived exertion and maximal oxygen consumption during a continuous running treadmill test were obtained on 127 high school female cross country runners. These young runners (x 15.6 yrs) were running approximately 25 miles per week at the time of testing. They had an average [Vdot]O2 max of 50.8 ml · min-1 and an HR max of 198.0 bpm. The mean percent body fat, as determined from hydrostatic weighing, was 15.4%. The onset of metabolic acidosis was estimated to occur at 78% of [Vdot]O2 max. A stepwise multiple regression with the 3000 meter run as the dependent variable indicated that max treadmill run time, weight relative [Vdot]O2 max and [Vdot] max entered the equation in that order, yielding an R of 0.67. Both HR and RPE increased with work intensity, but not at equal rates. These high school female runners had higher [Vdot]O2 max's than previously reported for this age group; however, they were considerably below these values reported for national caliber distance runners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号