首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
化归法是解条件分式求值问题的一种有效方法 ,现举实例加以说明。例 1 已知x2 - 3y2 =2xy ,x >0 ,y >0 ,求x - yx +y的值 .解 :由已知条件 ,得x2 - 2xy - 3y2 =0 ,∴ (x - 3y)·(x +y) =0∵x >0 ,y >0 ,有x +y >0 ,∴x - 3y =0 ,即x =3y∴x - yx +y=3y - y3y +y=2 y4 y=12 .例 2 已知 :x +2 y +z =0 ,3x - y - 11z =0 (z≠ 0 ) ,求x2 - y2 +z2xy +yz +zx的值 .解 :由已知条件视z为常数可得方程组x +2 y =-z ,3x - y =11z 解得x =3zy =- 2z∴原式 =(3z) 2 - (- 2z) 2 +…  相似文献   

2.
求自变量的取值范围 ,是函数概念中的一个重要知识点 .一些同学常常会因概念不清而出现错解 .现选择一些同学作业中的错解加以剖析 ,供大家参考 .例 1 求函数y =x -2x2 +x -6的自变量x的取值范围 . 错解一 ∵ y =x -2x2 +x -6=x -2(x + 3 ) (x -2 )=1x + 3 ,∴ 函数y =x -2x2 +x -6的自变量x的取值范围是x + 3≠ 0 ,即x≠ -3 . 错解二 由x2 +x -6=(x + 3 ) (x -2 )≠ 0 ,得x≠ -3或x≠ 2 .∴ 函数y =x -2x2 +x -6的自变量x的取值范围是x≠ -3或x≠ 2 .剖析 错解一错在分式约分这一步 .函数y =x…  相似文献   

3.
解二元 (或三元 )一次方程组除教材中介绍的代入消元法和加减消元法两种基本解法外 ,为了开阔同学们的视野 ,提高解题能力 ,本文补充几种解法 ,供参考。一、整体代入法———当方程组中某个未知数的系数成整数倍时 .例 1 解方程组 2x +5 y =- 2 1 ①x +3y =8   ②解 :由①得 2 (x +3y) -y =- 2 1 ③ ,把②代入③得 16 - y =2 1,y =37,把 y =37代入②解得x =- 10 3,∴ x =- 10 3y =37二、消常数项法———当方程组中的常数项成整数倍时 .例 2 解方程组4x +3y =10  ①9x - 7y =- 5  ②解 :① +②× 2得2 2x - 11…  相似文献   

4.
看谁解得巧     
题 1 设实数m、n分别满足m2 +99m +5 =0 ,5n2+99n +1 =0 ,且mn≠ 1 .求 mn+1 4n +1m 的值 . 解 (构造一元二次方程 )∵ n≠ 0 ,∴  1n2 +991n +5 =0 .又m2 +99m +5 =0 ,且mn≠1 ,∴  1n,m是一元二次方程x2 +99x+5 =0的两相异实根 .∴  1n+m =- 99,mn =5 .∴ mn+1 =- 99n,m =5n.故 mn+1 4n +1m =- 99n +1 4n5n =- 1 7.(四川 侯国兴提供 )题 2 已知正整数x、y满足xy+x+y =71 ,x2 y +xy2 =880 .求x2 +y2 的值 . 解 由 xy+x+y=71 ,x2 y +xy2 =880 ,得xy+(x+y) =71 …  相似文献   

5.
大家知道 ,一元二次方程ax2 +bx +c=0 (a≠ 0 )根的判别式Δ =b2 - 4ac有着广泛的应用 .下面就用Δ≤ 0求某些函数最值谈谈它的应用 .例 1 若x、y、z为正实数 ,且x + 3y + 5z =15,求 x + 5y+ 2z的最大值 .解 :设函数f (m ) =(x + 3y + 5z)m2 + 2 (x + 5y + 2z)m +1+ 532 + 252 =( xm + 1) 2 + 3ym + 532 + 5zm + 252≥ 0 ,x + 3y + 5z=15>0 ,所以Δ =4 (x + 5y+ 2z) 2 - 4(x + 3y + 5z) 1+ 53+ 25≤ 0 .即x +5y+ 2z≤ 4 6 .易得等号可以成立 ,故所求式的最大值为 4 6 .例 2 设θ为锐角 ,求…  相似文献   

6.
定理 两个n(n≥ 2 )次方程aixn bix ci=0○i(i=1 ,2 )有公共根的充要条件是(a2 c1-a1c2 ) n =(a1b2 -a2 b1) n - 1(b1c2 -b2 c1) .③证明 :设①、②有公根x0 ,记 y =x0 n,z =x0 ,则关于 y、z的方程组a1y b1z c1=0 ,a2 y b2 z c2 =0 ④有解 ( y ,z) .当a1b2 -a2 b1≠ 0时 ,④的解是y =b1c2 -b2 c1a1b2 -a2 b1,z =a2 c1-a1c2a1b2 -a2 b1.⑤因 y=x0 n=zn,由⑤可验证③成立 .当a1b2 -a2 b1=0时 ,因④有解 ,只有a2 c1-a1c2 =b1c2 -b2 c1=0 ,即③成…  相似文献   

7.
1 计算 :1+ 12 + 13+ 14 + 1512 + 13+ 14 + 15 + 16-1+ 12 + 13+ 14 + 15 + 1612 + 13+ 14 + 15 .2 若a >b >c,x >y >z ,则下列四个代数式中 ,值最大的一个是 (   ) .(A)ax +by +cz(B)ax +cy +bz(C)bx +ay +cz(D)bx +cy +az3 若x - 1-x - 6=5 ,则x的取值范围是 .4 已知三个连续自然数的倒数和是10 72 10 ,求这三个自然数 .5 已知a、b、c、d、x、y、z、t都是正实数 ,且a +x =b +y =c+z =d +t=4 .求证 :at+bx +cy +dz<32 .参考解答1 设a =1+ 12 + 13+ 14 + 15 ,b =12 +…  相似文献   

8.
在△ABC中 ,有著名的Finsler Hadwiger不等式∑a2 ≥ 43△ + ∑(b-c) 2 .①其中a、b、c、△分别是△ABC三边、面积 ,∑为循环和 .文 [1 ]将其加强为∑a2 ≥ 43△ + ∑(b -c) 2 +∑[b(c+a -b) -c(a +b -c) ]2 .②事实上 ,F—H不等式①可以这样得到 :对任意正数x、y、z,有恒等式(xy +xz+yz) 2=3xyz(x+y +z) + 12 [x2 (y -z) 2+y2 (x -z) 2 +z2 (x -y) 2 ].③在③中 ,令x =s -a ,y =s -b ,z =s-c,得[∑(s-b) (s-c) ]2=3s(s-a) (s-b) (s-c)+ 12 ∑(s-a)…  相似文献   

9.
应用判别式的关键在于 :找出或构造出以某个字母为主元 (即把这个字母看成未知数 ,其他字母看成已知数 )的一元二次方程 ,并将该方程化成一元二次方程的一般形式 ,再运用判别式解答 .一、解不定方程例 1 若x、y为实数 ,且满足 2x2 +y2 +8=2xy + 4y① ,则x、y的值分别是x =,y =.(1997年“希望杯”初中数学竞赛题 )分析 方程①中有两个未知数 ,把x看成已知数 ,构造一个以y为主元的一元二次方程 .解 以y为主元 ,将①式整理 ,得y2 - (2x + 4 )y + (2x2 + 8) =0 .∵ y为实数 ,∴ Δ≥ 0② .而Δ =(2x + 4 ) 2 - 4(2x2 …  相似文献   

10.
运用分母代换法证明不等式举例   总被引:1,自引:1,他引:1  
对于分母是多项式的分式不等式 ,采用将分母进行整体代换后 ,便于应用基本不等式或常见的“( ni=1ai) ( ni=11ai)≥n2 (ai >0 )”结论来证明 .下面分类举例 .1 分子为常数型例 1 若x、y、z∈ (0 ,1) ,求证 :11-x+ y+ 11- y+z+ 11-z+x ≥ 3.证明 设 1-x + y=a ,1- y+z=b ,1-z+x=c,则a >0 ,b>0 ,c>0 ,且a +b+c =3.∵ (a+b +c) (1a + 1b + 1c) ≥ 9,∴ 1a + 1b + 1c ≥ 3.故 11-x+ y+ 11- y+z+ 11-z+x ≥ 3.例 2  (第 19届莫斯科奥林匹克竞赛题 )设任意的实数x、y满足 |x| <1,|…  相似文献   

11.
在数学竞赛中 ,会碰到一类与两数和与积有关的问题 ,文 [1]给出了这类问题的解 ,笔者通过思考 ,发现对其中的一些问题可以通过构造一元二次方程求解 .例 1 已知x ,y ,z为实数 ,且x + y+z= 5 ,xy+yz+zx =3 ,试求z的最大值与最小值 .(加拿大第 10届数学竞赛题 )解 由题意 ,x+ y =5 -z ,xy =3 -z(x+y) =3 -z(5 -z) =z2 -5z + 3 ,所以x ,y是关于p的一元二次方程 p2 -(5 -z)p+ (z2 -5z+ 3 ) =0的两个实数根 ,从而Δ =(5 -z) 2 -4 (z2 -5z+ 3 ) =-3z2 +10z + 13 ≥ 0 ,解得 -1≤z ≤ 133 .因此 ,z的最…  相似文献   

12.
一、填空题 (本大题满分 48分 ,本大题共有 1 2题 ,只要求直接填写结果 ,每题填对得 4分 ,否则一律得零分 ) .1 .已知函数 f(x) =x +1 ,则 f- 1 ( 3 ) =.2 .直线 y=1与直线 y =3x+3的夹角为.3 .已知点P(tanα ,cosα)在第三象限 ,则角α的终边在第象限 .4.直线 y=x -1被抛物线 y2 =4x截得线段的中点坐标是 .5.已知集合A =x||x|≤ 2 ,x∈R ,B=x|x≥a ,且A B ,则实数a的取值范围是 .6.已知z为复数 ,则z+ z>2的一个充要条件是z满足 .7.若过两点A( -1 ,0 )、B( 0 ,2 )的直线l与圆(x-1 ) 2 +( y-a) …  相似文献   

13.
有些看似与方程组无关的问题 ,若能抓住特征构造方程组可以巧妙求解 ,举例如下 :一、由同类项的定义构造方程组例 1 如果单项式 2x2m -ny与 - 3x3y2m +n是同类项 ,那么m =   ,n =   .解 :由同类项定义 ,可得方程组2m -n =3,2m +n =1 . 解之得 m =1 ,n =- 1 .二、由非负数性质构造方程组例 2 若有理数x、y、z满足 | 2x - y| + | y + 2z| + (z- 2 ) 2 =0 ,则x+ y +z=   .解 :由非负数性质 ,得方程组 :2x - y =0 ,y + 2z=0 ,z - 2 =0 .  解得x =- 2 ,y =- 4,z=2 .∴x + y +z =- 2 - 4+ 2 =- …  相似文献   

14.
进行分式的加减运算时 ,若能根据分式的结构特点 ,采用巧妙、灵活的通分方法 ,则可化繁为简、事半功倍 .一、整体通分例 1 计算 :x-y +2y2x+y.分析 考虑到 (x +y) (x -y) =x2 -y2 ,本题可采用“整体通分” . 解 原式 =(x -y) (x+y)x +y +2y2x +y=x2 -y2 +2y2x +y=x2 +y2x +y .二、逐项通分例 2 计算 :1x - 1- 1x+1- 2x2 +1- 4x4 +1.分析 本题如果四个分式一起通分会比较繁 .根据式子分母间的联系 ,可采用“逐项通分”来简化运算 . 解 原式 =2(x - 1) (x +1) - 2x2 +1- 4x4 +1=4(x2 - 1) (x2…  相似文献   

15.
一类分式不等式的一种证法   总被引:2,自引:0,他引:2  
在分母为多项式的分式不等式中 ,有些不等式 ,通过变量代换 ,把分母化为单项式 ,灵活运用均值不等式或适当的放缩 ,便能得到简洁明快的证法 .举例如下例 1 已知△ABC的三边长为a,b ,c ,求证 :ab c -a bc a -b ca b -c≥ 3.证 设b c-a =2x ,c a -b=2y ,a b-c=2z,x ,y ,z >0 .令不等式的左端为M ,则M =y z2x x z2y x y2z= (y2x x2y) (z2y y2z) (x2z z2x)≥ 2 y2x· x2y 2 z2y· y2z 2 x2z· z2x= 1 1 1=3.例 2 设x ,y ,z∈R ,求证 :x2x y z yx 2y…  相似文献   

16.
一、在使用均值不等式时 ,容易忽略各项均为正数的前提条件例 1 求函数 y =x + 1x(x∈R且x≠ 0 )的值域 .错解 :∵ y =x + 1x≥ 2x·1x =2 ,∴ 函数的值域为 [2 ,+∞ ) .剖析 :令x =- 1,则 y =- 2 .显然 y =2不是最小值 .错误原因是忽视了变数应为正数的条件 .正解 :因x≠ 0 ,故 |x| >0 ,又x与 1x同号 ,∴  | y| =x + 1x =|x| + 1|x| ≥ 2 |x|· 1|x| =2 .y≤ - 2或 y≥ 2 .∴ 函数的值域为 ( -∞ ,- 2 ]∪ [2 ,+∞ ) .二、在使用均值不等式时 ,容易忽略等号成立的条件例 2 已知x∈ - π2 ,π2 ,求 y=c…  相似文献   

17.
1 “零”与“整”的转移有时在复杂的问题中 ,需把一个局部看成整体的集成块 ,使运算发生转移 ,这种聚零为整的思维方式 ,有利于整体功能的发挥。例 1:有甲、乙、丙三种货物 ,若购甲 3件 ,乙 7件 ,丙 1件 ,共需 3 .15元 ;若购甲 4件 ,乙 10件 ,丙 1件 ,共需 4.2 0元 ,现在购甲、乙、丙各一件 ,共需多少元 ?( 1985年初中教学联赛试题 )分析 : 购甲、乙、丙 1件各需x元、y元、z元得 :3x+ 7y +z=3.15  ①4x+ 10y +z=4.2 0  ②然后企图求三个未知数 ,感到条件不足 ,而题目中不可能再列出第三个方程 ,只好放弃。若能将x +y +z…  相似文献   

18.
构造对偶式解题是一种常用的方法 ,是指挖掘出题目中潜在的对称性 ,充分利用对称原理 ,就能在纷繁的困惑中 ,求得简捷的解法 .下面例谈构造对偶式解题的若干途径 ,供参考 .一、互倒构造是指利用倒数关系构造对偶式 .例 1 若x、y、z∈ (0 ,1 ) ,求证 11 -x y 11 -y z 11 -z x≥ 3 .证明 设M =11 -x y 11 -y z 11 -z x,构造互倒对偶式N =(1 -x y) (1 -y z) (1 -z x) ,则M N =11 -x y (1 -x y) 11 -y z (1 -y z) 11 -z x (1 -z x) ≥ 2 2 2 =6.而N =3 ,故M≥ 3 .即  11 -x y 11 -y …  相似文献   

19.
最值问题是初等数学中经常碰到的一类问题 .有些最值问题用常规代数方法较难入手 ,但若把问题适当变形 ,揭示其相应的几何意义 ,问题实质就直观清楚 ,易于解决 .例 1 已知x2 +2y2 =1 ,求z =x2 + y2 -4x + 4最值 .解 由条件知x2+ 2 y2 =1是中心在原点 ,长轴在x轴上的椭圆 ,它与x轴交于M(-1 ,0 ) ,N(1 ,0 ) .设P(x ,y)是椭圆上任一点 ,则z =(x-2 ) 2 + y2 就是P(x ,y)与点A(2 ,0 )距离 |AP| ,由图易知 |PA|≤|AM | ,|PA|≥|AN| .∴zmax =|AM|=2 + 1 =3 , zmin =|AN|=2 -1 =1 .…  相似文献   

20.
初三 ( 4)班的数学课外活动小组为了深入探讨二次函数解析式的简捷求法 ,召开了一次专题讨论会 .组长张翔 :二次函数解析式的求法灵活性较大 .如何根据题目的已知条件 ,选择最简捷的方法求解 ,请同学们各抒己见 .例 1 已知抛物线y =ax2 bx c的顶点为 ( 2 ,0 )且过点 ( 1 ,2 ) ,求抛物线的解析式 .( 1 998年江苏省连云港市中考题 )王岚同学首先给出解答 :解 ∵ 抛物线的顶点为 ( 2 ,0 )且过点( 1 ,2 ) ,∴ -b2a=2 ,4ac-b24a =0 ,a b c =2 . 解之 ,得a =2 ,b=-8,c=8.故所求解析式为y=2x2 -8x 8.接着李萍同学胸…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号