首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
勾股定理及其逆定理是平面几何中的重要定理之一,其应用极其广泛.如何运用勾股定理及其逆定理解题呢?本文总结几条规律供参考.一、当已知条件中有直角时,可考虑选用勾股定理例1 已知:如图1,矩形A8CD 中,AB=8,BC=10,沿AF 折叠矩形 ABCD,使点 D 刚好落在 BC 边上的 E 点处,求CF 及折痕 AF 的长.  相似文献   

2.
勾股定理是初中数学中重要的定理之一,应用十分广泛.学习勾股定理时,一定要正确理解定理的内容,记清定理成立的条件,区别定理与逆定理,只有这样,才能在解题时恰当地运用.1.已知图形中有直角时,可考虑选用勾股定理例1如图1,在矩形纸片ABCD中,AB=AB CFDEO图1AB PDC图2AB CQP图36,BC=8,将纸片折叠,使得A、C两点重合.求折痕EF的长.解析:连结AC交EF于点O,连结CF.因为A、C两点关于折痕EF对称,所以折痕EF是线段AC的垂直平分线,从而CF=AF.在矩形ABCD中,因为AB=6,BC=8,所以AC=$AB2 BC2=10.所以OA=OC=5.在Rt△CDF中,由勾…  相似文献   

3.
公式1如图1,△ABC的内切圆I分别切BC、AC、AB于D、E、F,若BC=a,CA=b,AB=c,则AE=AF=12(b+c-a),BF=BD=12(a+c-b),CD=CE=12(a+b-c).证明:由切线长定理知,AE=AF,BD=BF,CD=CE.∴AE+AF=(AB+AC)-(BF+CE)=(AB+AC)-(BD+CD)=c+b-a.∴AE=AF=12(b+c-a).同理可得另外两个公式.公式2△ABC的三边长分别为a、b、c,其面积为S,内切圆半径为r,则r=2Sa+b+c.证明:如图2,连结IA、IB、IC.则S=S△ACI+S△BCI+S△IAB=12r·AC…  相似文献   

4.
(四)折折叠叠有利于激发学生的创造思维学生创造的火花,往往可以在活动中得到激发与升华.而折折叠叠活动在融入思考以后,常常可以触发灵感,产生创意.例6用一张矩形纸,你能折出一个等边三角形吗?本题由于方法的灵活性与步骤的不确定性,因而思考有较大的自由空间.[解法一]如图6-甲,先将矩形ABCD(BC>AB)对折,使AD与BC重合,折痕为MN,再把B点叠在折痕上,得到Rt△AB'E,沿着EB'线折叠,就得到等边三角形EAF.这是书上的方法.(提示:设P为AE的中点,在Rt△AB'E中,由PB'=12AE=PA,得∠1=∠3,易证…  相似文献   

5.
勾股定理是几何中十分重要的定理,它揭示了直角三角形三条边之间的数量关系,是直角三角形特有的性质.勾股定理的逆定理以三角形三边之间的数量关系来判断直角三角形的定理.它把数与图形统一起来,体现了数学的重要思想——数形结合思想.现就其具体应用解析如下:一、综合应用勾股定理与方程的有关知识例1如图1,将矩形ABCD(AB相似文献   

6.
勾股定理是直角三角形的一个重要性质, 与其逆定理相结合揭示了直角三角形三边之间数与形的对应关系,体现了数学的数形结合思想.下面就其应用举例如下.一、利用勾股定理进行计算例1 已知:Rt△ABC 中,∠C=90°,AD、BE分别为BC、AC边的中线,AD= 2 10~(1/2),BE=5.求AB的长.分析:因为∠C=90°,AB是Rt△ABC的斜  相似文献   

7.
有些几何题,若能根据题目内容,运用补形法构造出特殊的四边形,不仅可使解题过程简洁明了,而且有助于培养学生的开拓意识和创造性思维.一、构造平行四边形例1如图1,已知在六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,AF-CD=3,求BC+DE的长.解:延长FA、CB交于点G,延长FE、CD交于点H.由题意知,BC∥EF,CD∥AF,易证△ABG和△DEH均为等边三角形,四边形FGCH为平行四边形.于是有GA+AF=CD+DH,∴AF-CD=DH-GA=DE-AB.∵AF-CD=3,故DE-AB=3.因AB+BC=11…  相似文献   

8.
一、选择题:1.下列各式一定成立的是().A.a2√>-aB.x2+y2√=|x+y|C.当a>b时,1a<1bD.a2=|a|2=|a2|2.如图1,在△ABC中,E、F分别是AC、AB上的点,已知AFFB=CEEA=13,BE与CF相交于O,AO的延长线交BC于D,则BD∶DC=().A.9∶2B.9∶1C.8∶1D.7∶23.若x=3√+2√3√-2√,y=3√-2√3√+2√,则2x2-3xy+5y2等于().A.340B.340-6√C.340-606√D.343+1406√4.在梯形ABCD中,AD∥BC,AB⊥BC,已知AD=2,AB…  相似文献   

9.
方程思想在初中数学中是应用最广泛的思维方法.在各类考试中常占50%左右,一般是代数中形形色色的应用题,无不依赖于建立方程(组)来解决,这在前几讲中已获得充分展开.上一讲中其在几何方面的应用也见端倪,在这里让我们再看一些实例,以便深入理解这一好方法的精髓.例1如图1,矩形ABCD中,AB=16,BC=8.将矩形沿对角线AC折叠,点D落在点E处,且CE与图2南东西北EAB交于点F,试求AF之长.分析:∵△ACD≌△ACE,∴AD=AE=8,CE=CD=16.∠BAC=∠ACD=∠ACE.∴AF=CF.设AF=x,则BF=16-x,…  相似文献   

10.
一、构造全等三角形例1如图1,已知E、F分别是正方形ABCD中BC、CD边上的点∠EAF=45°,求证:EF=BE+DF.分析:将△ADF绕点A按顺时针方向旋转90°到△ABG的位置,这时只要证明△EAF和△GAE全等就可以了.证明:将△ADF绕点A按顺时针方向旋转90°到△ABG的位置,则∠DAF=∠BAG,DF=BG,AF=AG.∵四边形ABCD是正方形,∴∠DAB=90°.∴∠FAG=90°.∵∠EAF=45°,∴∠EAG=45°.即∠EAF=∠EAG.∵AE是公共边,∴△EAF≌△EAG.∴EF=EG=BE+BG=BE+DF.二、构造直角三角…  相似文献   

11.
一、证明两条线段相等例1如图1,AD∥BC,若以梯形ABCD的边AB和对角线AC为边作ABEC,连结DE交BC于F.求证:DF=EF.略证:过点D作DG∥AB交BC于G,连结GE,则四边形ABGD为,∴ABDG.∵四边形ABEC是,∴ABCE,∴DGCE,∴四边形DGEC为,∴DF=EF.二、证不等量关系例2如图2,AD∥BC,BE=CF,AB=DC.求证:EF>BC.略证:过点B、F分别作CF和BC的平行线交于G,连结GE交BC于H,则BE=CF=BG,∠1=∠2=∠3.∴△BEG为等腰三角形,∴BH⊥GE,∴GF⊥EG,故在Rt△GEF中,EF>GF,即EF>B…  相似文献   

12.
勾股定理是初中几何的一个重要定理,它主要是用于求直角三角形的边长;而其逆定理则是用于判定一个三角形中的某一个角是直角.由此看来,勾股定理与其逆定理在应用上有着很大的不同,然而却有不少的几何问题必须非要应用两者“联手”来解决不可,现略举几例说明.一、先用勾股定理再用其逆定理解题1.求证三角形中的某一个角是直角例1如图1,已知△ABC中,AD是BC边上中线,AB=AD=1,AC=5,求证∠BAD是直角.证明:作AE垂直BC于E.因为AB=AD=1,所以BE=ED.设ED=x,则BD=DC=2x,EC=3x,在Rt△AED中,由勾股定理得AE2=AD2-ED2=1-x2,同理在Rt△…  相似文献   

13.
在一些涉及相似三角形的几何证明题中,有关面积之比的重要性质在证题中发挥着重要的作用.灵活运用面积比,可以巧证几何题.例1如图1,已知:△ABC中,∠C=90°.求证:AC2+BC2=AB2.这是大家熟悉的勾股定理.它的证明方法很多,利用相似三角形的面积之比进行证明,是其中一种较好的证明方法.证明:作CD⊥AB于D.∵∠ACB=90°,CD⊥AB,∴△ACD∽△CBD∽△ABC.∴S△ACDS△ABC=AC2AB2,S△CBDS△ABC=BC2AB2.∴AC2AB2+BC2AB2=AC2+BC2AB2=S△ACD+S△CBDS△ABC=1,∴A…  相似文献   

14.
原题已知AB=AC,CD⊥AB于点D,BE上AC于点E,BE与CD相交于点O,(1)求证:AD=AE.(2)连接OA、BC,试判断直线OA、BC的位置关系并说明理由.提供的标准答案:(1)证明:如图1中,在△ACD与△ABE中,∵.∠ADC=∠A EB=90°,∠A=∠A,AC=AB,∴△ACD≌△ABE.∴AD=AE.(2)互相垂直;证明连接OA、BC,如图2,在Rt△ADO与Rt△AEO中,  相似文献   

15.
勾股定理是几何殿堂中的一颗明珠,它在几何中有着广泛的应用.本文举例说明勾股定理在几何证明中的应用.因为勾股定理表达式中的每一项都是线段的平方,所以,在几何证明中,凡是关于线段平方的和差关系或线段平方与线段积的和差关系的几何命题,都可考虑应用勾股定理证明.例1如图1,在西ABC中,fC一gO”,D、E分别是AC、BC上的点.求证:AB+DE’一AE’+BD‘.证明在Rt凸ACB和Rt凸DCE中,由勾股定理,得AB‘一AC‘+BC’,DE‘一CD’+CE’.AB+DE‘一AC’+BC’车CP‘*-CE’在Rt凸ACE和RtHSCD中,同理可得…  相似文献   

16.
<正>由矩形纸片"折出"的中考题可谓丰富多彩."对称性质"是解这类问题的基本原理."勾股定理"是解矩形折叠问题的基本工具,"建立方程"是解矩形折叠问题的基本手段.下面让我们把这类问题的常见题型进行归类解析.一、求长度例1已知:矩形纸片ABCD中,AB=8,BC=10,沿AF折叠矩形ABCD,使点D刚好落在BC边上的E点处,求CF及折痕AF的长.  相似文献   

17.
勾股定理及其逆定理是几何中计分重要的两个定理,它们在解题中有着较为广泛的应用.现个例说明它们在几何解题中的综合应用.例1在△ABC中,D为BC边上的点,已知AB=13,AD=12,AC=15,BD=5,那么DC=解如图1,△ABD中AB=13,Al)。12,BIj=5,川西’一月Z)‘。-BI)’.根据匈股定理的逆定理,得/入DB一9}.从历上A*C一90”‘在Rt乙闩*工中,由勾股定理,得例2如因2,在门边形ABC”Ij中,已知AB:*C:厂U:*A一2:2:3:1,且/月一goo,则/I-)AB的度数为解不大般性,可设AD—1,则AB一B、一2,ID一3.连…  相似文献   

18.
题如图1,AC是矩形ABCD的一条对角线,线段EF垂直平分AC,交BC于E,交AD于F.已知AB=9,AD=12,AC与EF交于点G,求EF的值.思路1 用相似三角形在Rt△ABC中,运用勾股定理可得AC=15,因为EG上AC,AB上BC,∠ACB为公共角,  相似文献   

19.
关于三角形中位线有两个很重要的结论:其一是三角形的中位线平行于第三边;其二是三角形的中位线等于第三边的一半.利用这两个结论可以解决很多几何问题.下面举一些常见的例题,供同学们学习时参考.一、证明两直线平行例1已知:如国1,△ABC中,BE、CF分别为ABC和ACB的外角平分线,且AEBE,AFC7F.求证:EF/BC.分析延长AE、AF分别交直线BC于D、G,因为BE是ABD的平分线又是AE的垂线,所以Rt△BEA=Rt△BED,故AE=ED.同理可证AF=FG.因此,EF为△ADG的中位线,故可得出本题的结论.证明延长AE、AF分别交直线B…  相似文献   

20.
原题(北师大版9年级下册)如图1中,∠C=90°,AE=40,AF=30,在Rt△AEF的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号