首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
定理 在△ABC中 ,∠A =n∠B ,a、b、c分别为∠A、∠B、∠C的对边 ,a、b、c的关系记为 fn=fn(a ,b,c) =0 ,则有 (记N =14( 2n + ( -1 ) n +1+ 1 )fn=∑nk =1( -1 ) k- 1C2k - 1n b[4a2 c2 -(a2 -b2 +c2 ) 2 ]k - 1(a2 +c2 -b2 ) n- 2k+1-a( 2ac) n - 1.证明 :由 (cosB +isinB ) n =∑nk=0 Ckncosn -kB·(isinB) k=cosnB +isinnB ,得 sinnB =∑Nk=1C2k- 1n ( -1 ) k- 1sin2k- 1B ·cosn - 2k+1B .①又由sinAsinB=sinnBsinB =ab ,sinnB =absinB ,代入①即得∑Nk=1( -1 ) k - 1C2k- 1n sin2k- 2 B·cosn - 2k+1B -a =0 .②由余…  相似文献   

2.
数学归纳法是数学里一种重要的证明方法。下面通过实例,列举几种证法。一、代数恒等式的证明一般采用的证明方法是在等式两边同加或同乘以第 k+1项,然后适当变形即可得证。例1 求证:1-(1/2)+(1/3)-(1/4)+…+/1(2n-1)-1/(2n=1/(n+1)+1/(n+2)+…+1/(2n)证明1°当 n=1时,左边=1-1/2=1/2.右边=1/(1+1)=1/2.等式是成立的。2°假设 n=k(k≥1)时等式成立,即  相似文献   

3.
运用组合公式Cnk=Cn-kn,Ckn+1=Ckn+Ck-1n推导并证明了级数∞n=1∑n(n+1)…(n+k-1)(k∈N,k≥1)的前n项部分和的一般公式;同时给出了级数∞n=1∑nk(k∈N,k≥1前n项部分和的求法.  相似文献   

4.
对于由递推式所确定的数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列把问题解决.这类问题多年来一直是高考久考不衰的热点题型,尤其是2004年全国高考试题十分明显,直接求此类问题的通项公式,许多学生常常感到困惑不解,有时显得束手无策.下面分类说明.一、an+1=an+f(n)型此种类型常常化为an+1-an=f(n)构造阶差,采用累加的方式,可得通项公式.例1已知数列邀an妖中,a1=1,且a2k=a2k-1+穴-1雪k,a2k+1=a2k+3k,其中k=1,2,3,…,求邀an妖的通项公式.解∵a2k+1=a2k+3k=a2k-1+(-1)k+3k,∴a2k+1-a2k-1=3k+(-1)k,同理,a2k-1-a2k-3=3…  相似文献   

5.
根据递推关系式写出数列的通项公式既是考查学生对数列这部分知识是否掌握的试金石,也是考查学生的观察能力、推理能力、判断能力的重要手段.因此,对学生递推能力的考查一直是高考关注的重点.本文将对高中阶段出现的几种已知递推关系求数列通项公式的方法进行探讨.※递推公式形如an+1=an+f(n)的数列由上式可得:an=an-1+f(n-1)=an-2+f(n-2)+f(n-1)=…=a1+f(1)+f(2)+f(3)…+f(n-1)例:数列{an}中,a1=1且a2k=a2k-1+(-1)k,a2k+1=a2k+3k,其中k∈N+,求数列{an}的通项公式.解:∵a2k+1=a2k-1+(-1)k+3k,a2k+1-a2k-1=(-1)k+3k,∴a3-a1=(-1)1+31,a5…  相似文献   

6.
由递推公式确定数列的通项公式问题,通常可对递推公式进行变换,转化成等差数列或等比数列问题,也可通过联想构造或猜想证明把问题转化.一、an+1=an+f(n)型例已知数列{an},a1=1且a2k=a2k-1+(-1)k,a2k+1=a2k+3k.其中k=1,2,3,…,求{an}的通项公式.  相似文献   

7.
组合恒等式     
内容概述 1.基本组合恒等式简单组合恒等式的化简、证明可直接应用基本恒等式来完成,同时基本恒等式的推证方法也是组合恒等式问题中常见的处理方法,所以熟练掌握下面的几个基本组合恒等式相当重要. ①Ckn=Cn-kn; ②Ck+1n+1=Ck+1n+Ckn; ⑧Ckn=n/kCk-1n-1(或写成kCkn=nCk-1n-1); ④CknCmn=CmnCk-mn-m;  相似文献   

8.
数学归纳法是证明与自然数n有关的命题P(n)的数学思想方法.近年来的高考时有涉及. 用数学归纳法证题。“奠基”和“递推”这两步缺一不可,并需把握好其中的一些关键点. 一“奠基”步不可或缺例1 设n为正奇数,求证,n4+14n2+49是64的倍数. 证明:(1)当n=1时,14+14·12+49=64是64的倍数; (2)假设当n=2k-1(k∈N*)时,n4+14n2+49是64的倍数.令Sn=n4+14n2+49,则当,n=2k+1时,S2k+1-S2k-1=[2k+1)4+  相似文献   

9.
一个不等式的指数推广及应用   总被引:3,自引:0,他引:3  
文 [1]给出了一个不等式 :2 (n+1- 1) <∑nk=11k<2 n - 1  (n>1) . ( )本文首先用初等数学知识 ,借助于算术—几何均值不等式对 ( )式进行指数推广 ,从而把( )式统一到本文定理之中 ,最后指出该定理的应用 .定理  11- p[(n+1) 1 -p - 1]<∑nk=11kp<11- p· n1 -p - 11- p+1(p∈ Q且 p>0 ,p≠ 1,n>1) .定理证明依据如下引理 :引理 1  1kp<11- p[k1 -p- (k- 1) 1 -p](p∈ Q且 P>0 ,p≠ 1,k>1) .证明  (1)当 0 m kt· (k- 1) m -t,∴k- m- tm >m …  相似文献   

10.
我们知道数列通项 an 具有如下两个常见的基本变形式 :差式变形式 :an=(an- an-1 ) (an+ 1 - an-2 ) +…+(a2 - a1 ) +a1 . 1商式变形式 :an=anan-1· an-1 an-2·…· a3 a2· a2a1·a1 . 21式可以应用于求递推关系式为 :an+ 1 =an+g(n)型数列的通项公式 ;2式可以应用于求递推关系式为 :an+ 1 =f(n)× an型数列的通项公式 .而对求递推关系式为 :an+ 1 =kan+g(n) (k≠ 1 ) ( )型的通项公式就失效 .近期有杂志刊文介绍对 an+ 1 =kan+g(n) (k≠1 )型的通项公式求法 .不外乎两种方法 :其一是将an+ 1 =kan+g(n) (k≠ 1 )转化为 :an- h(n) =k{ an…  相似文献   

11.
二项式定理是排列、组合知识应用的重要方面 .又是发现推导新的组合恒等式的重要途径 .二项式定理应用的主要方面有 :求展开式中的某一项或某一项系数的问题 ,求所有项系数的和或者奇数项、偶数项系数和的问题 ,求二项式某一项中字母的值的问题 ,求近似值的问题等等 .下面我们就其基本知识方法和作了一些归纳 ,希望对同学们有所帮助 .基本知识 :(一定 )即二项式定理本身 :( a + b) n =C0nan + C1nan- 1b +… + Crnan- rbr +…+ Cnnbn ( n∈ N * )(二通 )即通项公式 :Tr+ 1=Crnan- rbr( 0≤ r≤ n)(三性 )即二项式系数性质 :( 1)对称性 :…  相似文献   

12.
本文先给出牛顿公式,并利用求函数的导数与多项式的比较系数法加以证明,再举例说明它在初等代数中的应用.一、公式及其证明当K≤n时,S_k-S_(k-1σ1)+S_(k-2σ2)+…+(-1)~(k-1)S_(1σk-1)+(-1)~k·K_(σk)=0(l)当K>n时,S_k-S_(k-1σl)+S_(k-2σ2)+…+(-1)~nS_(k-nσn)=0(2)其中σ_i(i=1,2,…,n)是初等对称多项式,即σ_i=X_1+X_2+…+X_n,σ_2=x_1X_2+X_2X_3+…+X_(n-1)X_n,…,σ_n=X_1X_2…X_nS_k(K=0,l,2,…)是一类特殊的对称多项式,即S_k=x_1~k+x_2~k+…+X_n~k(S_0=n)证明:令f(x)=(x-x_1)(x-x_2)…(x-x_n)=x~n-σ_1x~(n-1)+σ_2x~(n-2)+…  相似文献   

13.
高中数学新教材 (2 0 0 1年 10月第 2版 )第二册 (下 A)第 14 5页有这样一道习题 :求证 :Cmn-1 +Cmn-2 +Cmn-3 +… +Cmm + 1 +Cmm=Cm + 1 n .此题的证明关键是利用组合数性质 :Cmn+ 1 =Cmn +Cm -1 n ,采用逐次并项或逐次裂项的方法予以证明 ,此略 .此题揭示了组合数的一个非常重要的性质 ,它在探求某些与正整数方幂和有关的数列问题时 ,往往显得简捷明了 .下面是数列 { k(k+1)… (k+m) } (k∈N* )的前 n项和的公式 (m是固定的正整数 ) .(1) 1× 2 +2× 3+3× 4 +… +n(n+1)=A22 +A23 +A24+… +A2n+ 1=A22 (C22 +C23 +C24+… +C2n+ 1…  相似文献   

14.
一个有关组合数的恒等式是 :C1 n+ 2C2 n+3C3n+… +nCnn =n· 2 n- 1 (n∈N ) .下面给出它的三种不同证法 ,其中第三种证法出人意料 ,简洁优美 ,有绝妙之处 .证法 1 倒序相加法 .设Sn =C1 n + 2C2 n + 3C3n +… + (n-1)Cn - 1 n +nCnn,则Sn =nC0 n+ (n -1)C1 n+ (n-2 )C2 n+… +Cn- 1 n ,两式相加 ,得2Sn =n(C0 n+C1 n+C2 n+… +Cn - 1 n +Cnn)=n· 2 n.∴Sn =n· 2 n- 1 .证法 2 逐项转化法 .mCmn =m· n !m !(n -m) !=n· (n -1) !(m-1) !(n -m) !=nCm - 1 n- 1 ,分别令m =1,2 ,3 ,… ,n并分别相加得 .C1 n+ 2C2 n + 3C3n+…  相似文献   

15.
(本讲适合高中)4递推法对所求组合数,也可探求其中的递推规律,获取相应的递推式并加以解决,从而得到所求组合数.例10求∑nk=012kCnk k.解:设原式为f(n),则f(0)=1.由恒等式(Ⅱ),有f(n 1)=∑n 1k=0Cnk 1 k·21k=∑n 1k=0Cnk k·21k ∑nk =11Ckn- 1k·21k.将前一项分成f(n) C2nn 11·21n 1.变动后一项组合数上、下指标及求和指标,以k代原式中的k-1,得∑n 1k=1Ckn -1k·21k=∑k=n0Cnk k 1·2k1 1.故f(n 1)=f(n) C2nn 11·2n1 1 21∑k=n0Cnk k 1·21k.考虑到C2nn 12=(n (21)n! (2n) !1)!=2·n(2!(nn 11))!!=2C2nn 11,则f(n 1)=f(n) 122…  相似文献   

16.
<正> 在高中代数中有这样一个求和公式:12+22+32+…+n2=1/6n(n+1)(2n+1). (*)这个公式有各种证明方法,这里提供一种证法,供大家欣赏.这一证法主要运用了组合数的定义及性质Cnk+1=Cnk+Cn(k-1).由n2=(n+1)n-n=2·((n+1)n)/2-n中的((n+1)n)/2可  相似文献   

17.
利用经典的分析知识来研究Fibonacci多项式的组合性质:∑a1+a2+…+ak=nFa1+1(x) Fa2+1(x)…Fak+1(x)=∑[n+k2-1]l=0Cln+k-l-1Ck-1n+k-2l-1xn-2l,并得到一个有趣的结果:∑a1+a2+…+ak=nFa1+1 Fa2+1…Fak+1=∑[n+k2-1]l=0Cln+k-l-1Ck-1n+k-2l-1.  相似文献   

18.
极限与导数     
课时一 数列归纳法 基础篇 诊断练习一、选择题1.用数学归纳法证明 1n +1+1n +2 +… +12 n>132 4 时由 k到 k +1,不等式左端变化是 (   )( A)增加 12 ( k +1) 一项 .( B)增加 12 k +1和 12 k +2 二项 .( C)增加 12 k +1和 12 k +2 二项且减少 1k +1项 .( D)以上结论均错 .2 .用数学归纳法证明 1+12 +13+… +12 n - 11) ,第一步是证明不等式 (   )( A) 1<2成立 .  ( B) 1+12 <2成立 .( C) 1+12 +13<2成立 .( D) 1+12 +13+14 <2成立 .3.若命题 p( n)对 n =k成立 ,可以推出它对 n =k+2也成立 ,又若 p( n)对 n =2成立 ,则 (…  相似文献   

19.
文[1]利用组合数的性质等知识解决了函数f(x)=a/cos~nx+b/sin~nx(0相似文献   

20.
<正>数列的通项公式是高考重点考查的知识点之一,求数列通项公式的方法也很多,在具体的问题中选择最适当的方法来解决是重中之重。本文主要介绍用特征根法求数列通项公式。若常系数齐次线性递归数列的递归关系为:a_(n+k)=c_1a_(n+k-1_+c_2a_(n+k-2)+…+c_ka_n,则称方程xk=c_1xk=c_1x(k-1)+c_2x(k-1)+c_2x(k-2)+…+c_k为其特征方程,方程的根称为{a_n}的特征根。定理:如果x_1,x_2是递推关系a_n=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号