首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
△=b~2-4ac是一元二次方程ax~3 bx c=0的根的判别式,利用它可以不解方程,直接判别方程根的情况。实际上,在解题中,△=b~2-4ac的用途是相当广泛的。 1.△=b~2-4ac在“四个二次”问题中的应用 例1 已知方程(1)x~2-2kx k~2 k=O,(2)x~2-(4k 1)x 4k~2 k=0,(3)4x~2-(12k 4)x 9k~2 8k 12=0中至少有一个方程有实根,求k的取值范围。 分析 结论中“至少有一个方程有实根”的含义为:可能有一个方程有实根;可能有两个方程有实根;可能有三个方程有实根。 从分析看出,此题要用△≥0来解决。但情况复杂,解题繁琐,难以直接证明。因此,  相似文献   

2.
一元二次方程的根的判别式是重要的基础知识,在初中数学中应用极为广泛,它不仅是判别一元二次方程根的情况的依据,而且求代数式值、解方程(组)、求证等式等方面也有着重要的作用,若能熟练掌握它的各种用法,可提高同学们解题能力和知识的综合应用能力。一、判定方程根的情况例1已知方程x2-2x-m=0没有实数根,其中m是实数,试判定方程x2 2mx m(m 1)=0有无实根。解:∵方程x2-2x-m=0无实数根∴△1=(-2)2-4×(-m)=4 4m<0即m<-1又∵△2=(2m)2-4m(m 1)=-4m>0∴方程x2 2mx m(m 1)=0有两个不相等的实根。二、确定方程中系数的值或范围例2若方程x2 2(1-a…  相似文献   

3.
数学命题中的隐含条件常常容易被学生忽略,故而导致解题错误。 例1.已知关于x的方程mx~2-2(3m—1)x gm-1=0有两个实根,求m的范围。 错解 ∵方程有两个实根, ∴△≥0。 即△=[2(3m—1)]~2-4m(9m-1)≥0, 4(-5m 1)≥0, m≤1/5。 分析 根据方程有两个实根隐含条件:此  相似文献   

4.
判别式法     
根据b~2-4ac的值的符号可以判别一元二次方程ax~2+bx+c=0(a≠0)的根的情况,我们把b~2-4ac叫做一元二次方程的根的判别式,通常用符号"△"来表示.具体判别方法是:一元二次方程ax~2+bx+c=0(a≠0),(1)当△>0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.这三  相似文献   

5.
对于实系数一元二次方程 ax~2+bx+c=0(a≠0) (*)当△=b~2-4ac≥0时有实根,且实根的分布情况常借助抛物线y=ax~2+bx+c (a≠0)与x轴的交点来实现的。当△=b~2-4ac<0时,方程(*)无实根。由于在复数范围内,任何一个实系数一元二次方程都有两个根,因此,当△=b~2-4ac<0时,方程(*)只有两个虚根且共轭。显然,这两个虚根对应的点不在x轴上。那么虚  相似文献   

6.
一、注意关键的字词例1 m为何实数时,方程mx2-2x+3=0有实根误解∵方程mx-2x+3=0有实根,∴△=(-2)2-4·m·3≥0,解得m≤1/3.∵二次项系数m≠0,  相似文献   

7.
"△=b2-4ac"是一元二次方程ax2+bx +c=0的根的判别式,它是一元二次方程中的一个重要内容.有着许多方面的应用. 一、不需解方程即可判断根的情况 例1不解方程,试可判断方程ax2-4x +1 =0(a≠0)根的情况. 解:因为△=b2-4ac=16-4a, 当16-4a >0,即a<4,且a≠0时,方程有两个不相等的实数根; 当16-4a =0,即:a=4时,方程有两个相等的实数根; 当16-4a <0,即:a>4时,方程没有实数根.  相似文献   

8.
错在哪里?     
题:a是什么实数时,(x)/(x-2)+(x-2)/(x)+(2x+a)/(x(x-2))=0只有一个实数根,并求出这个实根。解原方程可变为(2x~2-2x+4+a)/(x(x-2))=0要使原方程只有一个实根,只要使方程2x~2-2x+4+a=0的判别式△=4-8(4+a)=0,解得 a=-7/2把a=-7/2代入方程2x~2-2x+4+a=0解得 x=1/2故当a=-7/2时,原方程只有一个实根x=1/2。解答错了!错在哪里这里混淆了只有一个根与重根的概念,其实由△=4-8(4+a)=0得a=-7/2,从而  相似文献   

9.
题目:当m取什么实数时,方程x~2 (m-2)x (m 3)=0两根平方和有最小值?最小值是多少?解法一:设此方程的两根为x_1、x_2,则x~2_1 x~2_2=(x_1 x_2)~2-2x_1x_2=〔-(m-2)〕~2-2(m 3)=m~2-6m-2∴当m=-(b/2a)即m=3时,x~2_1 x~2_2=m~2-6m-2 有最小值为:3~2-6×3-2=-11。解法二:设此方程的两根为x_1、x_2,则  相似文献   

10.
在解与实数相关的问题时,常常用到一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,这里谈谈判别式的具体应用中的一些错解。一、待定系数的求值问题例1.已知关于x的方程x2-mx-n=0的两根的积比两根之和的2倍小12,并且两根的平方和为22,求m,n的值。错解:设两根分别为x1、x2则x1+x2=m,x1x2=-n依题意,得2(x1+x2)-x1x2=12x21+x22=2 2即2m+n=12m2+2n=2 2解得m1=7n1=-272 或m2=-3n2=132 分析:∵方程有两根,∴△≥0即m2+4n≥0,但m1=7,n1=-272时,△<0。不合题意,应舍去。当m2=-3,n2=132时△>0∴m=-3,n=132例2.已知一元二次方…  相似文献   

11.
众所周知,一元二次方程 ax2 bx c=0(a≠0)根的判别式是△=b2-4ac.它不仅在判断一元二次方程根的情况时起着重要作用,而且在数学中还有着广泛的应用.1 判别一元二次方程根的情况对于实系数一元二次方程 ax2 bx c=0(a≠0),有△>0<=>方程有相异二实根,△=0  相似文献   

12.
下题是我们在学习一元二次方程的根的判别式时所常见的: 如果m为有理数,试确定k值,使方程x~2-2mx+10x+4k=0的根是有理数。拿到题目后,有的同学可能会这样解吧! 解原方程即x~2+(10-2m)x+4k=0,要使它的根是有理数,只需其根的判别式△=(10-2m)~2-16k=100-40m+4m~2-16k=4(m~2-10m+25-4k) ①是完全平方式,即m~2-10m+25-4k=0有相等的根,即以m为元的此二次方程的判别式△′=100-4(25-4k)=0,  相似文献   

13.
在实数范围内,一元二次方程ax2 bx c=0 (a≠0)有两个实根x1、x2,则x1 x2=-b/a,x1x2=c/a. 注意在实数范围内应用根与系数关系的前提条件是a≠0且△≥0.它的应用主要体现在不解方程或无法解方程的情况下,直接沟通方程系数与根之间的关系.现举例如下: 一、由根的性质求方程中未知数的值例1 已知关于x的方程2x2-mx-2m 1=0的两实根的平方和等于29/4,求m的值. 解:设方程的两实根为x1、x2则得x1 x2=m/2,  相似文献   

14.
例.设m~2 2m-1=0,n~4-2n~2-1=0.求(mn~2 n~2 1/m)~(1994)的值。解由m~2 2m-1=0得m≠0。两边除以m~2得(1/m)~2-2(1/m)-1=0 (1)n~4-2n~2-1=0得(n~2)~2-2n~2-1=0。 (2)由(1)、(2)知,(1/m)与n~2是方程x~2-2x-1=0的两个实数根,有(1/m) n~2=2,(1/m)·n~2=-1,故原式=(n~2 n~2/m 1/m)~(1994)=(2-1)~(1994)=1。这一解答有两处错误:第一,n~2不能看作方程x~2-2x-1=0的根。因为△=8>0,方程应有两个不同的实数根,但n~2只有一根1 2~(1/2),另一根1-2~(1/2)没有意义。因此,本题应把n~4-2n~2-1=0当作一个一元四次方程来解。  相似文献   

15.
如所周知,关于实系数一元二次方程Q_o:ax~2 bx c=0(a≠0)有两项重要的充要条件: 1.Q·有相异两实根△>0, Q_o有相等两实根△=0, Q_o有共轭两虚根△>0,(其中△=b~2-4ac) 2.复数x_1、x_2是方程Q_o的两根  相似文献   

16.
在一元二次方程的学习中,我们知道,b2-4ac称为一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用字母“△”表示,即△:b2-4ac.它的取值大小,决定着一元二次方程实数根的有无及多少,具体而言,有如下三种情况: 1.当△>0时,方程有两个不相等的实数根: 2.当△=0时,方程有两个相等的实数根: 3.当△<0时,方程没有实数根. 灵活利用根的判别式,可帮我们巧妙地解题.  相似文献   

17.
一、注意考察未知数的系数例 1 已知关于 x的方程 ( k- 2 ) x2 - 2 ( k- 1) x k 1=0 ,且 k≤ 3。求证 :此方程总有实数根。分析 :已知条件中未知数最高项系数是个含字母的代数式 ,这就意味着该方程不一定是一元二次方程 ,解题时必须就 k的不同取值加以讨论。证明 :当 k- 2 =0时 ,即 k=2时 ,原方程为一元一次方程 :- 2 x 3=0。∴方程有实数根 x=32 。 1当 k- 2≠ 0 ,即 k≠ 2时 ,原方程为一元二次方程。△ =〔- 2 ( k- 1)〕2 - 4 ( k- 2 ) ( k 1)=4 k2 - 8k 4- 4 k2 4k 8=12 - 4 k=4 ( 3- k) ,∵ k≤ 3,∴ 3- k≥ 0 ,即△≥ 0 ,∴方程有两…  相似文献   

18.
一、已知方程及系数的附加条件 ,证明根的存在性这种题型实质上是判别定理的直接应用 ,可归纳为如下思路 :方程———→△———→加入已附加条件 △的符号——结论例 1.已知关于 x的方程 x2 (m - 2 ) x 12 m- 3=0 ,求证 :无论 m取什么实数值 ,这个方程总有两个不相等的实数根。证明 :由方程得△ =(m- 2 ) 2 - 4 (12 m- 3) =m2 - 6 m 16 =(m- 3) 2 7,∵ m为实数 ,∴ (m- 3) 2≥ 0 ,即△ =(m - 3) 2 7>0。∴无论 m取何实数值 ,方程总有两个不相等的实数根。二、已知方程及根的存在性 ,证明与方程系数有关的等式及不等式这类题的思路…  相似文献   

19.
题目:当k为何值时,方程(k2-1)x2+2(k+1)x+1=0有实数根?四位同学采取了如下四种不同的解法。甲的解法:∵△=[2(k+1)]2-4(k2-1)=8k+8.∴当8k+8>0,即k>-1时,方程有实数根。乙的解法:∵△=8k+8,∴当8k+8≥0,即k≥-1时,方程有实数根。丙的解法:∵△=8k+8,依题意有:k2-1≠08k+8≥0解之得:k≠±1,k≥-1∴当k>-1且k≠1时,方程有实数根。丁的解法:分别讨论k2-1≠0与k2-1=0两种情:(1)设k2-1≠0,依题意有k2-1≠08k+8≥0解得:k≠±1,k≥-1∴当k>-1且k≠1时,方程有两个实数根;(2)当k=1时,原方程为4x+1=0,有一个实数根;(3)当k=-1时,原方程为0·x+1=0,方程…  相似文献   

20.
一元二次方程ax2 +bx +c =0(a≠0)根的判别式是b2-4ac,通常用符号"△"来表示.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;反之也成立.判别式不仅用来判断一元二次方程根的情况,也可以解决其他数学问题.一、求字母的值 例1 (2012年广州卷)已知关于x的一元二次方程x2-2√3x+k=0有两个相等的实数根,则k的值为____. 解:∵方程x2-2√3x+k=0有两个相等的实数根,∴△=(-2√3)2-4k=0. ∴12-4k=0,解得k=3.故填3. 温馨小提示:这是判别式的典型应用.我们要熟记判别式值的正负与根的个数之间的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号