首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
①如果f(x)是奇(或偶)函数,则有f(-x)=-f(x)(或f(-x)=f(x)). ②若0属于奇函数f(x)的定义域,则f(0)=0. ③奇函数的图像关于原点对称,偶函数的图像关于y轴对称. ④定义域关于原点对称的函数f(x)都可以表示为一个奇函数  相似文献   

2.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数;如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数.其判定的法则是:(1)看关系式是否出现f(-x)=-f(x)(此为奇函数)或f(-x)=f(x)(此为偶函数);(2)看定义域是否关于原点对称;(3)看图像是否关于原点对称(此为奇函数)或关于y轴对称(此为偶函数).显然,法  相似文献   

3.
我们知道对于函数y=f(x)在定义域内的任意自变量x,若有f(-x)=-f(x)恒成立,则称该函数为奇函数;若有f(-x)=f(x)恒成立,则称该函数为偶函数.因为奇函数的图像关于原点对称,所以奇函数图像在原点的左右两侧的面积互为相反数,即在[-a,a]上连续的奇函数f(x)在该区间上的定积分为零,  相似文献   

4.
对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),则称f(x)为这一定义域内的奇函数,奇函数的图象关于原点对称.如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称f(x)为这一定义域内的偶函数,偶函数的图象关于y轴对称.  相似文献   

5.
函数是初等数学的主要内容之一,函数的奇偶性又是函数的一个重要性质,那么如何判断一个函数的奇偶性呢?判断函数的奇偶性,应紧扣它的定义。如果对于函数 f(x)定义域内的任意一个 x,都有 f(-x)=-f(x)(或 f(-x)=f(x)),那么函数 f(x)就叫做奇函数(或偶函数)。定义揭示了奇函数与偶函数的定义域是对称于原点的实数,如果定义域不是关于原点对称的,则必不是奇函数也不是偶函数。因此,判断一个函数的奇偶性,首先判断它的定义域是否关于原点对称,然后再判断 f(x)与 x(-x)的关系。在解题的过程中发现,有好多题直接难以判  相似文献   

6.
函数的奇偶性是函数的一个重要性质。正确地理解函数的奇偶性概念及其判别并能灵活应用,具有重要的意义。本文将对此进行具体的分析。函数奇偶性定义,对于函数定义域内任意一个x都有f(-x)=f(x)或f(-x)=-f(x),则函数f(x)叫偶函数或奇函数,既不是偶函数也非奇函数的函数称为非奇非偶函数。这个定义实际包括了四个条件:(1)定义域关于原点对称。即定义域是关于原点的对称区间;(2)当x属于定义域时,-x也一定属于此定义域;(3)必须在整个定义域上研究;(4)f(-x)=f(x)或f(-x)=-f(x)这四条缺一不可,但在这四个条件中只有第(4)条是显式条件,而其他三条都…  相似文献   

7.
根据奇偶函数的定义,对于函数定义域内任意一个x,都有f(-x)=f(x)或f(-x)=-f(x)成立。所以,f(-x)必须有意义,即-x也必须属于函数定义域。由于x与-x关于原点对称,因而函数的定义域关于原点对称是判断函数奇偶性的前提条件。所以在判断函数奇偶性时,必须先看其定义域是否关于原点对称。如果一个函数的定义域关于原点不对称,则该函数为非奇非偶函数。如果一个函数的定义域关于原点对称,判断其奇偶性常见方法有以下三种:  相似文献   

8.
一、函数概念上理解致错例1、函数f(x)=1-x2姨|2-x|-2是()(A)奇函数而不是偶函数.(B)偶函数而不是奇函数.(C)奇函数又是偶函数.(D)非奇非偶函数.错解:∵f(-x)=1-(-x)2姨|2+x|-2=1-x2姨|2+x|-2,∴f(-x)≠f(x)且f(-x)≠-f(x).∴f(x)为非奇非偶函数.故选(D).评析:①错在忽略了函数定义域.函数定义应满足1-x2≥0,|2-x|-2≠0 .即-1≤x≤1,x≠0 .则f(x)=1-x2姨(2-x)-2=-1-x2姨x.∴f(-x)=-1-x2姨-x=1-x2姨x=-f(x),f(x)为奇函数.故选(A).②判断函数奇偶性,首先要注意函数的定义域是否关于原点对称,是关于原点对称再判断f(-x)与f(x)的关系…  相似文献   

9.
现行教材中,关于奇函数和偶函数是这样定义的: 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),则称f(x) 为这一定义域内的奇函数; 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称f(x)为 这一定义域内的偶函数. 有些学生认为只要形式上有f(-x)=-f(x),f(x)就是奇函数;有f(-x)=f(x),f(x)就 是偶函数,而与函数f(x)的定义域没有任何关系. 事实上,如果不先看函数的定义域,函数的奇偶性是无法判别的.  相似文献   

10.
<正>我们知道,奇函数图象关于原点对称;偶函数图象关于y轴对称.用数学符号语言可以描述为:若函数f(x)对于定义域内的任意x,都有f(-x)=-f(x)(或f(-x)=f(x))成立,则称函数f(x)为奇函数(或偶函数).这一定义从数的方面描述了奇(偶)函数图形的特征,有助于数形结合解决问题.一、函数奇偶性与图象对称性的推广利用函数图象变换的有关规律,结合函数奇偶性的定义与性质,我们不难得到函数图象对称性的如下两个结论.  相似文献   

11.
在函数奇偶性概念的学习中,应多方面、多角度地思考概念的内涵,要掌握函数奇偶性定义的等价形式,注重寻求简捷的解题方法.函数奇偶性的定义是:如果对于函数定义域内任意一个x,都有f(-x)=-f(x) (或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).函数奇偶性的定义反映在定义域上:若f(x)是奇函数或偶函数,则对于定义域D  相似文献   

12.
一、函数的奇偶性的定义设函数的定义域为数集D,如果对于任意的x∈D都有-x∈D,且f(-x)=f(x),那么f(x)叫做偶函数;若对任意x∈D都有-x∈D,且f(-x)=-f(x),那么f(x)叫做奇函数.如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性,不具备奇偶性函数叫做非奇非偶的函数.  相似文献   

13.
一、忽视复合函数中变量的范围致错例1已知函数f(x2-1)=lg(xx2-22),试判断f(x)的奇偶性.错解令t=x2-1,则x2=t+1.∴f(t)=lgtt-+11,即f(x)=lgxx-+11.∵f(-x)=lg--xx+-11=-lgxx-+11=-f(x),∴f(x)为奇函数.解析函数奇偶性是建立在定义域关于原点对称的前提条件下的,因此应首先求出原函数的定义域.若定义域不关于原点对称,则原函数为非奇非偶函数;若定义域关于原点对称,则再用奇偶性的定义判断.此题由xx2-22>0,即x2>2,∴t=x2-1>1,故得函数f(x)的定义域为{x|x>1},关于原点不对称,所以f(x)为非奇非偶函数.二、忽视函数的定义域致错例2判断函数y=…  相似文献   

14.
文 [1]给出了广义奇偶函数的概念 :对于函数 f (x) ,若存在常数 a,b,使得函数定义域内任意 x,都有 f (a + x ) =-f (b-x)成立 ,则称 f (x)为广义奇函数 .特别地 ,当 a =b = 0时 ,f (x)是奇函数 .对于函数 f (x) ,若存在常数 a,b,使得函数定义域内任意 x,都有 f (a + x) =f (b -x)成立 ,则称 f (x)为广义偶函数 .特别地 ,当 a =b= 0时 ,f (x)是偶函数 .本文给出广义奇偶函数的性质 :定理 1 广义奇函数的图像关于点(a + b2 ,0 )成中心对称图形 ,广义偶函数的图像关于直线 x =a + b2 成轴对称图形 .证明 :(1)设 f (x)为广义奇函数 ,则存在常数…  相似文献   

15.
由奇函数、偶函数的图象定理知:若f(-x)=-f(x),则函数f(x)的图象关于原点对称;若f(-x)=f(x),则函数f(x)的图象关于y轴对称. 下面我们研究此结论的推广情况.  相似文献   

16.
奇函数与偶函数的定义域都是对称于原点的实数集。考虑函数的奇偶性,应先考虑函数的定义域是不是关于原点对称的实数集。不是,则无奇偶性可言;是,再验证f(-x)=f(x),f(-x)=-f(x)是否成立。掌握这一特征,对于我们解决这一类问题是非常重要的。但常被忽视,导致错误。请看下面例子。  相似文献   

17.
文 [1]介绍了广义奇 (偶 )函数的概念与性质 :定义 对于函数 f(x) ,若存在常数a、b ,使得函数定义域内的任意x ,都有 f(a+x) =- f(b-x)成立 ,则称 f(x)为广义奇函数 ;若存在常数a、b ,使得函数定义域内的任意x ,都有 f(a+x) =f(b -x)成立 ,则称 f(x)为广义偶函数 ,性质 对于函数 f(x)定义域的任意x ,f(a+x) =- f(b-x) f(x)的图像关于点 (a+b2 ,0 )对称 ;对于函数 f(x)定义域内的任意x ,f(a+x) =f(b-x) f(x)的图像关于直线x =a+b2 对称 .实际上 ,将上述广义奇 (偶 )函数 f(x)的图像平移 n=(- a +b2 ,0 ) ,即成为对应的奇 (偶 )函数的图…  相似文献   

18.
我们知道,如果对于函数定义域内的任意x,(1)都有f(-x)=-f(x),则称f(x)是奇函数;(2)都有f(-x)=f(x),则称f(x)是偶函数.  相似文献   

19.
文[1]至文[4]都对如下两类常见的对称问题进行了辨析:例1设函数y=f(x)定义在实数集上,且满足f(1 x)=f(1-x),则f(x)的图像关于对称.例2若函数y=f(x)的定义域为R,则函数y=f(1 x)与y=f(1-x)的图像关于对称.作为其补充,本文再给出一组容易混淆的对称问题:例3若函数f(x)(x∈R)满足:f(x-3) f(1-x)=0,且方程f(x)=0恰有三个相异实根,求这三根之和.例4已知函数f(x)(x∈R),若方程f(x-3) f(1-x)=0恰有三个相异实根,求这三根之和.分析对于例3,由条件知:f(x)的图像关于点(-1,0)成中心对称,又已知方程f(x)=0恰有三个相异实根,所以这三个根中必有一根为-1…  相似文献   

20.
函数的性质     
本讲介绍函数的奇偶性,单调性,周期性,有界性,凹凸性及其在数学竞赛中的应用. (一)奇偶性1.若定义在I上的函数f(x)满足f(-x)=-f(x),则称f(x)为奇函数;其图象关于原点对称,若f(-x)=f(x),则称f(x)为偶函数;其图象关于y轴对称.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号