首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separation of cells based on their biomechanical properties, such as size and deformability, is important in applications such as the identification of circulating tumor cells, where morphological differences can be used to distinguish target cancer cells from contaminant leukocytes. Existing filtration-based separation processes are limited in their selectivity and their ability to extract the separated cells because of clogging in the filter microstructures. We present a cell separation device consisting of a hydrodynamic concentrator and a microfluidic ratchet mechanism operating in tandem. The hydrodynamic concentrator removes the majority of the fluid and a fraction of leukocytes based on size, while the microfluidic ratchet mechanism separates cancer cells from leukocytes based on a combination of size and deformability. The irreversible ratcheting process enables highly selective separation and robust extraction of separated cells. Using cancer cells spiked into leukocyte suspensions, the complete system demonstrated a yield of 97%, while enriching the concentration of target cancer cells 3000 fold relative to the concentration of leukocytes.  相似文献   

2.
The dielectric properties of tumour cells are known to differ from normal blood cells, and this difference can be exploited for label-free separation of cells. Conventional measurement techniques are slow and cannot identify rare circulating tumour cells (CTCs) in a realistic timeframe. We use high throughput single cell microfluidic impedance cytometry to measure the dielectric properties of the MCF7 tumour cell line (representative of CTCs), both as pure populations and mixed with whole blood. The data show that the MCF7 cells have a large membrane capacitance and size, enabling clear discrimination from all other leukocytes. Impedance analysis is used to follow changes in cell viability when cells are kept in suspension, a process which can be understood from modelling time-dependent changes in the dielectric properties (predominantly membrane conductivity) of the cells. Impedance cytometry is used to enumerate low numbers of MCF7 cells spiked into whole blood. Chemical lysis is commonly used to remove the abundant erythrocytes, and it is shown that this process does not alter the MCF7 cell count or change their dielectric properties. Combining impedance cytometry with magnetic bead based antibody enrichment enables MCF7 cells to be detected down to 100 MCF7 cells in 1 ml whole blood, a log 3.5 enrichment and a mean recovery of 92%. Microfluidic impedance cytometry could be easily integrated within complex cell separation systems for identification and enumeration of specific cell types, providing a fast in-line single cell characterisation method.  相似文献   

3.
This paper presents the design, fabrication, and testing of a magnetophoretic bioseparation chip for the rapid isolation and concentration of CD4 + T cells from the peripheral blood. In a departure from conventional magnetic separation techniques, this microfluidic-based bioseperation device has several unique features, including locally engineered magnetic field gradients and a continuous flow with a buffer switching scheme to improve the performance of the separation process. Additionally, the chip is capable of processing significantly smaller sample volumes than conventional methods and sample losses are eliminated due to decreased handling. Furthermore, the possibility of sample-to-sample contamination is reduced with the disposable format. The overall dimensions of the device were 22 mm by 60 mm by 1 mm, approximately the size of a standard microscope slide. The results indicate a cell purity of greater than 95% at a sample flow rate of 50 ml/h and a cell recovery of 81% at a sample flow rate of 10 ml/h. The cell purity was found to increase with increasing the sample flow rate. However, the cell recovery decreases with an increase in the flow rate. A parametric study was also performed to investigate the effects of channel height, substrate thickness, magnetic bead size, and number of beads per cell on the cell separation performance.  相似文献   

4.
Isolation and enumeration of circulating tumor cells (CTCs) are used to monitor metastatic disease progression and guide cancer therapy. However, currently available technologies are limited to cells expressing specific cell surface markers, such as epithelial cell adhesion molecule (EpCAM) or have limited specificity because they are based on cell size alone. We developed a device, ApoStream that overcomes these limitations by exploiting differences in the biophysical characteristics between cancer cells and normal, healthy blood cells to capture CTCs using dielectrophoretic technology in a microfluidic flow chamber. Further, the system overcomes throughput limitations by operating in continuous mode for efficient isolation and enrichment of CTCs from blood. The performance of the device was optimized using a design of experiment approach for key operating parameters such as frequency, voltage and flow rates, and buffer formulations. Cell spiking studies were conducted using SKOV3 or MDA-MB-231 cell lines that have a high and low expression level of EpCAM, respectively, to demonstrate linearity and precision of recovery independent of EpCAM receptor levels. The average recovery of SKOV3 and MDA-MB-231 cancer cells spiked into approximately 12 × 106 peripheral blood mononuclear cells obtained from 7.5 ml normal human donor blood was 75.4% ± 3.1% (n = 12) and 71.2% ± 1.6% (n = 6), respectively. The intra-day and inter-day precision coefficients of variation of the device were both less than 3%. Linear regression analysis yielded a correlation coefficient (R2) of more than 0.99 for a spiking range of 4–2600 cells. The viability of MDA-MB-231 cancer cells captured with ApoStream was greater than 97.1% and there was no difference in cell growth up to 7 days in culture compared to controls. The ApoStream device demonstrated high precision and linearity of recovery of viable cancer cells independent of their EpCAM expression level. Isolation and enrichment of viable cancer cells from ApoStream enables molecular characterization of CTCs from a wide range of cancer types.  相似文献   

5.
Zhao C  Cheng X 《Biomicrofluidics》2011,5(3):32004-3200410
Clinical analysis of acute viral infection in blood requires the separation of viral particles from blood cells, since the cytoplasmic enzyme inhibits the subsequent viral detection. To facilitate this procedure in settings without access to a centrifuge, we present a microfluidic device to continuously purify bionanoparticles from cells based on their different intrinsic movements on the microscale. In this device, a biological sample is layered on top of a physiological buffer, and both fluids are transported horizontally at the same flow rate in a straight channel under laminar flow. While the micron sized particles such as cells sediment to the bottom layer with a predictable terminal velocity, the nanoparticles move vertically by diffusion. As their vertical travel distances have a different dependence on time, the micro- and nanoparticles can preferentially reside in the bottom and top layers respectively after certain residence time, yielding purified viruses. We first performed numerical analysis to predicate the particle separation and then tested the theory using suspensions of synthetic particles and biological samples. The experimental results using dilute synthetic particles closely matched the numerical analysis of a two layer flow system containing different sized particles. Similar purification was achieved using diluted blood spiked with human immunodeficiency virus. However, viral purification in whole blood is compromised due to extensive bioparticle collisions. With the parallelization and automation potential offered by microfluidics, this device has the potential to function as an upstream sample preparation module to continuously provide cell depleted bio-nanoparticles for downstream analysis.  相似文献   

6.
A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.  相似文献   

7.
Blood cell sorting is critical to sample preparation for both clinical diagnosis and therapeutic research. The spiral inertial microfluidic devices can achieve label-free, continuous separation of cell mixtures with high throughput and efficiency. The devices utilize hydrodynamic forces acting on cells within laminar flow, coupled with rotational Dean drag due to curvilinear microchannel geometry. Here, we report on optimized Archimedean spiral devices to achieve cell separation in less than 8 cm of downstream focusing length. These improved devices are small in size (<1 in.2), exhibit high separation efficiency (∼95%), and high throughput with rates up to 1 × 106 cells per minute. These device concepts offer a path towards possible development of a lab-on-chip for point-of-care blood analysis with high efficiency, low cost, and reduced analysis time.  相似文献   

8.
We demonstrate the method of non-inertial lift induced cell sorting (NILICS), a continuous, passive, and label-free cell sorting approach in a simple single layer microfluidic device at low Reynolds number flow conditions. In the experiments, we exploit the non-inertial lift effect to sort circulating MV3-melanoma cells from red blood cell suspensions at different hematocrits as high as 9%. We analyze the separation process and the influence of hematocrit and volume flow rates. We achieve sorting efficiencies for MV3-cells up to EMV3 = 100% at Hct = 9% and demonstrate cell viability by recultivation of the sorted cells.  相似文献   

9.
Wei Hou H  Gan HY  Bhagat AA  Li LD  Lim CT  Han J 《Biomicrofluidics》2012,6(2):24115-2411513
Sepsis is an adverse systemic inflammatory response caused by microbial infection in blood. This paper reports a simple microfluidic approach for intrinsic, non-specific removal of both microbes and inflammatory cellular components (platelets and leukocytes) from whole blood, inspired by the invivo phenomenon of leukocyte margination. As blood flows through a narrow microchannel (20 × 20 µm), deformable red blood cells (RBCs) migrate axially to the channel centre, resulting in margination of other cell types (bacteria, platelets, and leukocytes) towards the channel sides. By using a simple cascaded channel design, the blood samples undergo a 2-stage bacteria removal in a single pass through the device, thereby allowing higher bacterial removal efficiency. As an application for sepsis treatment, we demonstrated separation of Escherichia coli and Saccharomyces cerevisiae spiked into whole blood, achieving high removal efficiencies of ∼80% and ∼90%, respectively. Inflammatory cellular components were also depleted by >80% in the filtered blood samples which could help to modulate the host inflammatory response and potentially serve as a blood cleansing method for sepsis treatment. The developed technique offers significant advantages including high throughput (∼1 ml/h per channel) and label-free separation which allows non-specific removal of any blood-borne pathogens (bacteria and fungi). The continuous processing and collection mode could potentially enable the return of filtered blood back to the patient directly, similar to a simple and complete dialysis circuit setup. Lastly, we designed and tested a larger filtration device consisting of 6 channels in parallel (∼6 ml/h) and obtained similar filtration performances. Further multiplexing is possible by increasing channel parallelization or device stacking to achieve higher throughput comparable to convectional blood dialysis systems used in clinical settings.  相似文献   

10.
In this paper, we use a spiral channel inertial focusing device for isolation and purification of chromosomes, which are highly asymmetric. The method developed is proposed as a sample preparation process for transchromosomic research. The proposed microfluidics-based chromosome separation approach enables rapid, label-free isolation of bioactive chromosomes and is compatible with chromosome buffer. As part of this work, particle force analysis during the separation process is performed utilizing mathematic models to estimate the expected behavior of chromosomes in the channel and the model validated with experiments employing fluorescent beads. The chromosome sample is further divided into subtypes utilizing fluorescent activated cell sorting , including small condensed chromosomes, single chromosomes, and groups of two chromosomes (four sister chromatids). The separation of chromosome subtypes is realized based on their shape differences in the spiral channel device under high flow rate conditions. When chromosomes become aligned in the shear flow, the balance between the inertial focusing force and the Dean flow drag force is determined by the chromosome projection area and aspect ratio, or shape difference, leading to different focusing locations in the channel. The achieved results indicate a new separation regime in inertial microfluidics that can be used for the separation of non-spherical particles based on particle aspect ratios, which could potentially be applied in fields such as bacteria subtype separation and chromosome karyotyping.  相似文献   

11.
Circulating tumor cells (CTCs) are important biomarkers for monitoring tumor dynamics and efficacy of cancer therapy. Several technologies have been demonstrated to isolate CTCs with high efficiency but achieve a low purity from a large background of blood cells. We have previously shown the ability to enrich CTCs with high purity from large volumes of blood through selective capture in microvortices using the Vortex Chip. The device consists of a narrow channel followed by a series of expansion regions called reservoirs. Fast flow in the narrow entry channel gives rise to inertial forces, which direct larger cells into trapping vortices in the reservoirs where they remain circulating in orbits. By studying the entry and stability of particles following entry into reservoirs, we discover that channel cross sectional area plays an important role in controlling the size of trapped particles, not just the orbital trajectories. Using these design modifications, we demonstrate a new device that is able to capture a wider size range of CTCs from clinical samples, uncovering further heterogeneity. This simple biophysical method opens doors for a range of downstream interventions, including genetic analysis, cell culture, and ultimately personalized cancer therapy.  相似文献   

12.
We present design, characterization, and testing of an inexpensive, sheath-flow based microfluidic device for three-dimensional (3D) hydrodynamic focusing of cells in imaging flow cytometry. In contrast to other 3D sheathing devices, our device hydrodynamically focuses the cells in a single-file near the bottom wall of the microchannel that allows imaging cells with high magnification and low working distance objectives, without the need for small device dimensions. The relatively large dimensions of the microchannels enable easy fabrication using less-precise fabrication techniques, and the simplicity of the device design avoids the need for tedious alignment of various layers. We have characterized the performance of the device with 3D numerical simulations and validated these simulations with experiments of hydrodynamic focusing of a fluorescently dyed sample fluid. The simulations show that the width and the height of the 3D focused sample stream can be controlled independently by varying the heights of main and side channels of the device, and the flow rates of sample and sheath fluids. Based on simulations, we also provide useful guidelines for choosing the device dimensions and flow rates for focusing cells of a particular size. Thereafter, we demonstrate the applicability of our device for imaging a large number of RBCs using brightfield microscopy. We also discuss the choice of the region of interest and camera frame rate so as to image each cell individually in our device. The design of our microfluidic device makes it equally applicable for imaging cells of different sizes using various other imaging techniques such as phase-contrast and fluorescence microscopy.  相似文献   

13.
Primary hemostasis and blood clotting is known to be influenced by the red blood cell volume fraction (hematocrit) in blood. Depressed or elevated levels of red blood cells can lead to vascular perfusion problems ranging from bleeding to thrombus formation. The early stage of hemostasis and thus blood clotting in all vessel sections from the arterial to the venous system involves the adhesion of platelets to von Willebrand factor. Here we present experimental and theoretical results showing that the adhesion probability of platelets to von Willebrand factor is strongly and nonlinearly dependent on hematocrit and flow rate. Interestingly, the actual binding forces are not markedly different, which suggest that the origin of such behavior is in the distribution of platelets. Using hydrodynamic simulations of a simple model, we explicitly show that the higher the hematocrit and the flow rate, the larger the amount of platelets residing close to the wall. Our simulation results, which are in excellent agreement with the experimental observations, explain why such phenomena occur. We believe that the nonhomogeneous red blood cell distribution as well as the shear dependent hydrodynamic interaction is key for the accumulation of platelets on the vessel wall. The work we present here is an important step forward from our earlier work on single molecules and extends into the collective cellular behavior of whole blood. It sheds new light on the correlation between hematocrit and the initial steps in hemostasis and thrombosis, and outlines advances for the treatment of vascular diseases associated with high levels of red blood cells. These results are not only highly relevant for the field of hemostasis and the physics of blood clotting but are also of powerful impact in applied science most obviously in drug delivery and colloidal science.  相似文献   

14.
In this paper, we demonstrate the possibility to trap and sort labeled cells under flow conditions using a microfluidic device with an integrated flat micro-patterned hard magnetic film. The proposed technique is illustrated using a cell suspension containing a mixture of Jurkat cells and HEK (Human Embryonic Kidney) 293 cells. Prior to sorting experiments, the Jurkat cells were specifically labeled with immunomagnetic nanoparticles, while the HEK 293 cells were unlabeled. Droplet-based experiments demonstrated that the Jurkat cells were attracted to regions of maximum stray field flux density while the HEK 293 cells settled in random positions. When the mixture was passed through a polydimethylsiloxane (PDMS) microfluidic channel containing integrated micromagnets, the labeled Jurkat cells were selectively trapped under fluid flow, while the HEK cells were eluted towards the device outlet. Increasing the flow rate produced a second eluate much enriched in Jurkat cells, as revealed by flow cytometry. The separation efficiency of this biocompatible, compact micro-fluidic separation chamber was compared with that obtained using two commercial magnetic cell separation kits.  相似文献   

15.
High-throughput size-based rare cell enrichment using microscale vortices   总被引:2,自引:0,他引:2  
Cell isolation in designated regions or from heterogeneous samples is often required for many microfluidic cell-based assays. However, current techniques have either limited throughput or are incapable of viable off-chip collection. We present an innovative approach, allowing high-throughput and label-free cell isolation and enrichment from heterogeneous solution using cell size as a biomarker. The approach utilizes the irreversible migration of particles into microscale vortices, developed in parallel expansion-contraction trapping reservoirs, as the cell isolation mechanism. We empirically determined the critical particle∕cell diameter D(crt) and the operational flow rate above which trapping of cells∕particles in microvortices is initiated. Using this approach we successfully separated larger cancer cells spiked in blood from the smaller blood cells with processing rates as high as 7.5×10(6) cells∕s. Viable long-term culture was established using cells collected off-chip, suggesting that the proposed technique would be useful for clinical and research applications in which in vitro culture is often desired. The presented technology improves on current technology by enriching cells based on size without clogging mechanical filters, employing only a simple single-layered microfluidic device and processing cell solutions at the ml∕min scale.  相似文献   

16.
Inertial microfluidics has brought enormous changes in the conventional cell/particle detection process and now become the main trend of sample pretreatment with outstanding throughput, low cost, and simple control method. However, inertial microfluidics in a straight microchannel is not enough to provide high efficiency and satisfying performance for cell/particle separation. A contraction–expansion microchannel is a widely used and multifunctional channel pattern involving inertial microfluidics, secondary flow, and the vortex in the chamber. The strengthened inertial microfluidics can help us to focus particles with a shorter channel length and less processing time. Both the vortex in the chamber and the secondary flow in the main channel can trap the target particles or separate particles based on their sizes more precisely. The contraction–expansion microchannels are also capable of combining with a curved, spiral, or serpentine channel to further improve the separation performance. Some recent studies have focused on the viscoelastic fluid that utilizes both elastic forces and inertial forces to separate different size particles precisely with a relatively low flow rate for the vulnerable cells. This article comprehensively reviews various contraction–expansion microchannels with Newtonian and viscoelastic fluids for particle focusing, separation, and microfluid mixing and provides particle manipulation performance data analysis for the contraction–expansion microchannel design.  相似文献   

17.
A size-selective cell sorting microfluidic device that utilizes optical force is developed. The device consists of a three-dimensional polydimethylsiloxane microstructure comprised of two crossed microchannels in a three-dimensional configuration. A line shaped focused laser beam is used for automatic size-selective cell sorting in a continuous flow environment. As yeast cells in an aqueous medium are fed continuously into a lower channel, the line shaped focused laser beam is applied (perpendicular to the direction of flow) at the junction of the two crossed channels. The scattering force of the laser beam was employed to push cells matching specific criteria upward from one channel to another. The force depends on the size of the cells, the laser power, and the fluid flow speed. The variation in size of yeast cells causes them to follow different routes at the intersection. For flow speeds below 30 μm∕s, all yeast cells larger than 3 μm were removed from the main stream. As a result, a high purity sample of small cells can be collected at the outlet of bottom channel.  相似文献   

18.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.  相似文献   

19.
A novel microfluidic device which consists of two stages for particle focusing and separation using a viscoelastic fluid has been developed. A circular capillary tube was used for three-dimensional particle pre-alignment before the separation process, which was inserted in a polydimethylsiloxane microchannel. Particles with diameters of 5 and 10 μm were focused at the centerline in the capillary tube, and the location of particles was initialized at the first bifurcation. Then, 5 and 10 μm particles were successfully separated in the expansion region based on size-dependent lateral migration, with ∼99% separation efficiency. The proposed device was further applied to separation of MCF-7 cells from leukocytes. Based on the cell size distribution, an approximate size cutoff for separation was determined to be 16 μm. At 200 μl/min, 94% of MCF-7 cells were separated with the purity of ∼97%. According to the trypan blue exclusion assay, high viability (∼90%) could be achieved for the separated MCF-7 cells. The use of a commercially available capillary tube enables the device to be highly versatile in dealing with particles in a wide size range by using capillary tubes with different inner diameters.  相似文献   

20.
Inertial microfluidics is an emerging class of technologies developed to separate circulating tumor cells (CTCs). However, defining design parameters and flow conditions for optimal operation remains nondeterministic due to incomplete understanding of the mechanics, which has led to challenges in designing efficient systems. Here, we perform a parametric study of the inertial focusing effects observed in low aspect ratio curvilinear microchannels and utilize the results to demonstrate the isolation of CTCs with high purity. First, we systematically vary parameters including the channel height, width, and radius of curvature over a wide range of flow velocities to analyze its effect on size dependent differential focusing and migration behaviors of binary (10 μm and 20 μm) particles. Second, we use these results to identify optimal flow regimes to achieve maximum separation in various channel configurations and establish design guidelines to readily provide information for developing spiral channels tailored to potentially arbitrary flow conditions that yield a desired equilibrium position for optimal size based CTC separation. Finally, we describe a fully integrated, sheath-less cascaded spiral microfluidic device to continuously isolate CTCs. Human breast cancer epithelial cells were successfully extracted from leukocytes, achieving 86.76% recovery, 97.91% depletion rate, and sustaining high viability upon collection to demonstrate the versatility of the device. Importantly, this device was designed without the cumbersome trail-and-error optimization process that has hindered the development of designing such inertial microfluidic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号