首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cui S  Liu Y  Wang W  Sun Y  Fan Y 《Biomicrofluidics》2011,5(3):32003-320038
This paper examined the feasibility of a microfluidics chip for cell capturing and pairing with a high efficiency. The chip was fabricated by the polydimethylsiloxane-based soft-lithography technique and contained two suction duct arrays set in parallel on both sides of a main microchannel. Cells were captured and paired by activating two sets of suction ducts one by one with the help of syringe pumps along with switching the cell suspensions inside the main microchannel correspondingly. The effects of suction flow rate and the dimensions of suction channels on the cell capturing and pairing efficiency were characterized. The present chip was capable of creating 1024 pairs of two different cell populations in parallel. The preliminary experimental results showed that the cell capturing efficiency was 100% and the pairing one was 88% with an optimal suction rate of 5 μl/min in the chip in the 2 μm-sized suction duct chip. The cell viability after capture inside the microfluidic device was 90.0 ± 5.3%. With this cell capturing and pairing chip, interaction between cells in a single pair mode can be studied. The ability to create cell pairs has a number of biological applications for cell fusion, cell-cell interaction studies, and cell toxicity screening.  相似文献   

2.
This study describes a novel microfluidic reactor capable of flow-through polymerase chain reactions (PCR). For one-heater PCR devices in previous studies, comprehensive simulations and experiments for the chip geometry and the heater arrangement were usually needed before the fabrication of the device. In order to improve the flexibility of the one-heater PCR device, two heat pipes with one fan are used to create the requisite temperature regions in our device. With the integration of one heater onto the chip, the high temperature required for the denaturation stage can be generated at the chip center. By arranging the heat pipes on the opposite sides of the chip, the low temperature needed for the annealing stage is easy to regulate. Numerical calculations and thermal measurements have shown that the temperature distribution in the five-temperature-region PCR chip would be suitable for DNA amplification. In order to ensure temperature uniformity at specific reaction regions, the Re of the sample flow is less than 1. When the microchannel width increases and then decreases gradually between the denaturation and annealing regions, the extension region located in the enlarged part of the channel can be observed numerically and experimentally. From the simulations, the residence time at the extension region with the enlarged channel is 4.25 times longer than that without an enlarged channel at a flow rate of 2 μl/min. The treated surfaces of the flow-through microchannel are characterized using the water contact angle, while the effects of the hydrophilicity of the treated polydimethylsiloxane (PDMS) microchannels on PCR efficiency are determined using gel electrophoresis. By increasing the hydrophilicity of the channel surface after immersing the PDMS substrates into Tween 20 (20%) or BSA (1 mg/ml) solutions, efficient amplifications of DNA segments were proved to occur in our chip device. To our knowledge, our group is the first to introduce heat pipes into the cooling module that has been designed for a PCR device. The unique architecture utilized in this flow-through PCR device is well applied to a low-cost PCR system.  相似文献   

3.
Recently, interest in single cell analysis has increased because of its potential for improving our understanding of cellular processes. Single cell operation and attachment is indispensable to realize this task. In this paper, we employed a simple and direct method for single-cell attachment and culture in a closed microchannel. The microchannel surface was modified by applying a nonbiofouling polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, and a nitrobenzyl photocleavable linker. Using ultraviolet (UV) light irradiation, the MPC polymer was selectively removed by a photochemical reaction that adjusted the cell adherence inside the microchannel. To obtain the desired single endothelial cell patterning in the microchannel, cell-adhesive regions were controlled by use of round photomasks with diameters of 10, 20, 30, or 50 μm. Single-cell adherence patterns were formed after 12 h of incubation, only when 20 and 30 μm photomasks were used, and the proportions of adherent and nonadherent cells among the entire UV-illuminated areas were 21.3%±0.3% and 7.9%±0.3%, respectively. The frequency of single-cell adherence in the case of the 20 μm photomask was 2.7 times greater than that in the case of the 30 μm photomask. We found that the 20 μm photomask was optimal for the formation of single-cell adherence patterns in the microchannel. This technique can be a powerful tool for analyzing environmental factors like cell-surface and cell-extracellular matrix contact.  相似文献   

4.
Hepatoprotectant is critical for the treatment of liver disease. This study first reported the application of a liver chip in the hepatoprotective effect assessment. We first established a biomimetic sinusoid-on-a-chip by laminating four types of hepatic cell lines (HepG2, HUVEC, LX-2, and U937 cells) in a single microchannel with the help of laminar flow in the microchannel and some micro-fences. This chip was straightforward to fabricate and operate and was able to be long-term cultured. It also demonstrated better hepatic activity (cell viability, albumin synthesis, urea secretion, and cytochrome P450 enzyme activities) over the traditional planar cell culture model. Then, we loaded three hepatoprotectants (tiopronin, bifendatatum, and glycyrrhizinate) into the chip followed by the addition of acetaminophen as a toxin. We successfully observed the hepatoprotective effect of these hepatoprotectants in the chip, and we also found that bifendatatum predominantly reduced alanine transaminase secretion, tiopronin predominantly reduced lactate dehydrogenase secretion, and glycyrrhizinate predominantly reduced aspartate transaminase secretion, which revealed the different mechanisms of these hepatoprotectants and provided a clue for following molecular biological study of the protecting mechanism.  相似文献   

5.
Liu HB  Ting EK  Gong HQ 《Biomicrofluidics》2012,6(1):12815-1281510
An air venting element on microchannel, which can be controlled externally and automatically, was demonstrated for manipulating liquid plugs in microfluidic systems. The element's open and closed statuses correspond to the positioning and movement of a liquid plug in the microchannel. Positioning of multiple liquid plugs at an air venting element enabled the merging and mixing of the plugs. Besides these basic functions, other modes of liquid plug manipulations including plug partitioning, multiple plug mixing, and spacing adjustment between liquid plugs, were realized using combination of multiple elements. The structure, operation, and some functions of the element were demonstrated with a microfluidic chip application. The performances of the element including its failure modes, threshold flow rate, and structural optimization were also discussed.  相似文献   

6.
Some aqueous reactions in biological or chemical fields are accomplished at a high temperature. When the reaction temperature is higher than 100 °C, an autoclave reactor is usually required to elevate the boiling point of the water by creating a high-pressure environment in a closed system. This work presented an alternative continuous flowing microfluidic solution for aqueous reaction with a reaction temperature higher than 100 °C. The pressure regulating function was successfully fulfilled by a small microchannel based on a delicate hydrodynamic design. Combined with micro heater and temperature sensor that integrated in a single chip by utilizing silicon-based microfabrication techniques, this pressure regulating microchannel generated a high-pressure/high-temperature environment in the upstream reaction zone when the reagents continuously flow through the chip. As a preliminary demonstration, thermal digestion of aqueous total phosphorus sample was achieved in this continuous flowing micro-reactor at a working pressure of 990 kPa (under the working flow rate of 20 nl/s) along with a reaction temperature of 145 °C. This continuous flowing microfluidic solution for high-temperature reaction may find applications in various micro total analysis systems.  相似文献   

7.
We propose an alternate fabrication technique of microchannel resonators based on an assembly method of three separate parts to form a microchannel resonator on a chip. The capability of the assembled microchannel resonator to detect mass is confirmed by injecting two liquids with different densities. The experimental and theoretical values of the resonator frequency shift are in agreement with each other, which confirms the consistency of the device. The noise level of the device is estimated from the Allan variance plot, so the minimum detectable mass of 230 fg after 16 s of operation is expected. By considering the time of the practical application of 1 ms, it is found that a detectable mass of around 8.51 pg is estimated, which is applicable for detecting flowing microparticles. The sub-pico to a few picogram levels of detection will be applicable for the mass analysis of flowing microparticles such as single cells and will be greatly beneficial for many fields such as chemistry, medicine, biology, and single-cell analysis.  相似文献   

8.
Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of particle sizes in a single channel and also align red blood cells without any significant deformation.  相似文献   

9.
Ma D  Chen H  Li Z  He Q 《Biomicrofluidics》2010,4(4):44107
Cell culture and harvest are the most upstream operation for a completely integrated cell assay chip. In our previous work, thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was successfully grafted onto polydimethylsiloxane (PDMS) surface via benzophenone-initiated photopolymerization. In the present work, the PNIPAAm-grafted-PDMS (PNIPAAm-g-PDMS) surface was explored for thermomodulated cell culture and noninvasive harvest in microfluidic channels. Using COS 7 fibroblast from African green monkey kidney as the model cells, the thermomodulated adhering and detaching behaviors of the cells on the PNIPAAm-g-PDMS surfaces were optimized with respect to PNIPAAm-grafting yields and gelatin modification. The viability of the cells cultured on and harvested from the PNIPAAm-g-PDMS surface with the thermomodulated noninvasive protocol was estimated against the traditional cell culture∕harvest method involving trypsin digestion. The configuration of the microchannel on the PNIPAAm-g-PDMS chip was evaluated for static cell culture. Using a pipette-shaped PNIPAAm-g-PDMS microchannel, long-term cell culture could be achieved at 37 °C with periodic change of the culture medium every 12 h. After moving the microchip from the incubator set at 37 °C to the room temperature, the proliferated cells could be spontaneously detached from the PNIPAAm-g-PDMS surface of the upstream chamber and transferred by a gentle fluid flow to the downstream chamber, wherein the transferred cells could be subcultured. The thermomodulated cell culture, harvest, and passage operations on the PNIPAAm-g-PDMS microfluidic channels were demonstrated.  相似文献   

10.
Spheroid culture is a preferable cell culture approach for some cell types, including hepatocytes, as this type of culture often allows maintenance of organ-specific functions. In this study, we describe a spheroid microarray chip (SM chip) that allows stable immobilization of hepatocyte spheroids in microwells and that can be used to evaluate drug metabolism with high efficiency. The SM chip consists of 300-μm-diameter cylindrical wells with chemically modified bottom faces that form a 100-μm-diameter cell adhesion region surrounded by a nonadhesion region. Primary hepatocytes seeded onto this chip spontaneously formed spheroids of uniform diameter on the cell adhesion region in each microwell and these could be used for cytochrome P-450 fluorescence assays. A row of microwells could also be connected to a microchannel for simultaneous detection of different cytochrome P-450 enzyme activities on a single chip. The miniaturized features of this SM chip reduce the numbers of cells and the amounts of reagents required for assays. The detection of four cytochrome P-450 enzyme activities was demonstrated following induction by 3-methylcholantlene, with a sensitivity significantly higher than that in conventional monolayer culture. This microfabricated chip could therefore serve as a novel culture platform for various cell-based assays, including those used in drug screening, basic biological studies, and tissue engineering applications.  相似文献   

11.
Blood plasma contains biomarkers and substances that indicate the physiological state of an organism, and it can be used to diagnose various diseases or body condition. To improve the accuracy of diagnostic test, it is required to obtain the high purity of blood plasma. This paper presents a low-cost, disposable microfluidics device for blood plasma extraction using magnetophoretic behaviors of blood cells. This device uses alternating magnetophoretic capture modes to trap and separate paramagnetic and diamagnetic cells away from blood plasma. The device system is composed of two parts, a disposable microfluidics chip and a non-disposable (reusable) magnetic field source. Such modularized device helps the structure of the disposable part dramatically simplified, which is beneficial for low-cost mass production. A series of numerical simulation and parametric study have been performed to describe the mechanism of blood cell separation in the microchannel, and the results are discussed. Furthermore, experimental feasibility test has been carried out in order to demonstrate the blood plasma extraction process of the proposed device. In this experiment, pure blood plasma has been successfully extracted with yield of 21.933% from 75 μl 1:10 dilution of deoxygenated blood.  相似文献   

12.
13.
Core-shell hybrid nanoparticles (NPs) for drug delivery have attracted numerous attentions due to their enhanced therapeutic efficacy and good biocompatibility. In this work, we fabricate a two-stage microfluidic chip to implement a high-throughput, one-step, and size-tunable synthesis of mono-disperse lipid-poly (lactic-co-glycolic acid) NPs. The size of hybrid NPs is tunable by varying the flow rates inside the two-stage microfluidic chip. To elucidate the mechanism of size-controllable generation of hybrid NPs, we observe the flow field in the microchannel with confocal microscope and perform the simulation by a numerical model. Both the experimental and numerical results indicate an enhanced mixing effect at high flow rate, thus resulting in the assembly of small and mono-disperse hybrid NPs. In vitro experiments show that the large hybrid NPs are more likely to be aggregated in serum and exhibit a lower cellular uptake efficacy than the small ones. This microfluidic chip shows great promise as a robust platform for optimization of nano drug delivery system.  相似文献   

14.
The advent and dissemination of next-generation sequencing (NGS) technologies such as Illumina''s sequencing platforms has brought forth vast reductions in the cost, time, and technical difficulties associated with DNA and RNA sequencing. Despite this trend, the workflow required to generate nucleic acid libraries for sequencing remains time-consuming and laborious. The following research proposes a method for simplifying and streamlining this process by replacing the manual washing steps of the common magnetic bead-based cleanup with a novel microfluidic method by integrating magnetic separation and electrokinetic purification (MSEP). Requiring no pumps, pipette mixing, vortexing, or centrifugation, MSEP relies on selective adsorption of target DNA onto the magnetic beads with subsequent transport of beads through a microchannel undergoing an antiparallel electroosmotic flow. The synergetic flow conditions were optimized using a simple electrohydrodynamic flow model. This work demonstrates that MSEP is as effective in eliminating adapter-dimers from the post-ligation library mix as the manual method while also greatly reducing the hands-on time and amount of pipetting required. Although MSEP has been applied specifically toward NGS library preparation at this time, it has the potential to be adapted and employed for any bead-based separation scheme, namely, solid phase extraction, sequence-specific hybridization, and immunoprecipitation on a microscale.  相似文献   

15.
Optofluidic tweezer on a chip   总被引:1,自引:0,他引:1  
A novel method to realize an optical tweezer involving optofluidic operation in a microchannel is proposed. To manipulate the optical tweezer, light from an optical fiber is passed through both PDMS (polydimethylsiloxane)-air surface lenses and an optofluidic region, which is located in a control channel. Two liquids with different refractive indices (RIs) are introduced into the control channel to form two different flow patterns (i.e., laminar and segmented flows), depending on the liquid compositions, the channel geometry, and the flow rates. By altering the shapes of the interface of the two liquids in the optofluidic region, we can continuously or intermittently control the optical paths of the light. To demonstrate the functionality of the proposed method, optical tweezer operations on a chip are performed. Changing the flow pattern of two liquids with different RIs in the optofluidic region results in successful trapping of a 25 μm diameter microsphere and its displacement by 15 μm.  相似文献   

16.
Burke JM  Smela E 《Biomicrofluidics》2012,6(1):16506-1650610
A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.  相似文献   

17.
A sequential and high-throughput single-cell manipulation system for a large volume of cells was developed and the successive manipulation for single cell involving single-cell isolation, individual labeling, and individual rupture was realized in a microhydrodynamic flow channel fabricated by using two-dimensional simple flow channels. This microfluidic system consisted of the successive single-cell handlings of single-cell isolation from a large number of cells in cell suspension, labeling each isolated single cell and the lysate extraction from each labeled single cell. This microfluidic system was composed of main channels, cell-trapping pockets, drain channels, and single-cell content collection channels which were fabricated by polydimethylsiloxane. We demonstrated two kinds of prototypes for sequential single-cell manipulations, one was equipped with 16 single-cell isolation pockets in microchannel and the other was constructed of 512 single-cell isolation pockets. In this study, we demonstrated high-throughput and high-volume single-cell isolation with 512 pocket type device. The total number of isolated single cells in each isolation pocket from the cell suspension at a time was 426 for the cell line of African green monkey kidney, COS-1, and 360 for the rat primary brown preadipocytes, BAT. All isolated cells were stained with fluorescence dye injected into the same microchannel successfully. In addition, the extraction and collection of the cell contents was demonstrated using isolated stained COS-1 cells. The cell contents extracted from each captured cell were individually collected within each collection channel by local hydrodynamic flow. The sequential trapping, labeling, and content extraction with 512 pocket type devices realized high-throughput single-cell manipulations for innovative single-cell handling, feasible staining, and accurate cell rupture.  相似文献   

18.
Ultrafast microfluidics using surface acoustic waves   总被引:2,自引:0,他引:2  
We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions can also be used for the rapid synthesis of 150–200 nm polymer∕protein particles or biodegradable polymeric shells in which proteins, peptides, and other therapeutic molecules are encapsulated within for controlled release drug delivery. The atomization of thin films behind a translating drop containing polymer solutions also gives rise to long-range spatial ordering of regular polymer spots whose size and spacing are dependent on the SAW frequency, thus offering a simple and powerful method for polymer patterning without requiring surface treatment or physical∕chemical templating.  相似文献   

19.
Electroconvection is known to cause strong convective mixing in a microchannel near a nanoporous membrane or a nanochannel in contact with an electrolyte solution due to the external electric field. This study addresses micromixer behavior subject to electroconvection occurring near a nanoporous membrane in-situ fabricated by a laser polymerization technique on a microfluidic chip. We found that the micromixer behavior can be categorized into three regimes. Briefly, the weak electroconvection regime is characterized by weak mixing performance at a low applied voltage and KCl concentration, whereas the strong electroconvection regime has a high mixing performance when the applied voltage and KCl concentration are moderately high. Finally, the incomplete electroconvection regime has an incomplete electric double-layer overlap in the nanopores of the membrane when the electrolyte concentration is very high. The mixing index reached 0.92 in the strong electroconvection regime. The detailed fabrication methods for the micromixer and characterization results are discussed in this paper.  相似文献   

20.
A technique for microfluidic, pH modulated DNA capture and purification using chitosan functionalized glycidyl methacrylate monoliths is presented. Highly porous polymer monoliths are formed and subsequently functionalized off-chip in a batch process before insertion into thermoplastic microchannels prior to solvent bonding, simplifying the overall fabrication process by eliminating the need for on-chip surface modifications. The monolith anchoring method allows for the use of large cross-section monoliths enabling high flowrates and high DNA capture capacity with a minimum of added design complexity. Using monolith capture elements requiring less than 1 mm2 of chip surface area, loading levels above 100 ng are demonstrated, with DNA capture and elution efficiency of 54.2% ± 14.2% achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号