首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Jen CP  Chen WF 《Biomicrofluidics》2011,5(4):44105-4410511
Manipulating and discriminating biological cells of interest using microfluidic and micro total analysis system (μTAS) devices have potential applications in clinical diagnosis and medicine. Cellular focusing in microfluidic devices is a prerequisite for medical applications, such as cell sorting, cell counting, or flow cytometry. In the present study, an insulator-based dielectrophoretic microdevice is designed for the simultaneous filtration and focusing of biological cells. The cells are introduced into the microchannel and hydrodynamically pre-confined by funnel-shaped insulating structures close to the inlet. There are ten sets of X-patterned insulating structures in the microfluidic channel. The main function of the first five sets of insulating structures is to guide the cells by negative dielectrophoretic responses (viable HeLa cells) into the center region of the microchannel. The positive dielectrophoretic cells (dead HeLa cells) are attracted to regions with a high electric-field gradient generated at the edges of the insulating structures. The remaining five sets of insulating structures are mainly used to focus negative dielectrophoretic cells that have escaped from the upstream region. Experiments employing a mixture of dead and viable HeLa cells are conducted to demonstrate the effectiveness of the proposed design. The results indicate that the performance of both filtration and focusing improves with the increasing strength of the applied electric field and a decreasing inlet sample flow rate, which agrees with the trend predicted by the numerical simulations. The filtration efficiency, which is quantitatively investigated, is up to 88% at an applied voltage of 50 V peak-to-peak (1 kHz) and a sample flow rate of 0.5 μl/min. The proposed device can focus viable cells into a single file using a voltage of 35 V peak-to-peak (1 kHz) at a sample flow rate of 1.0 μl/min.  相似文献   

2.
Zhu J  Xuan X 《Biomicrofluidics》2011,5(2):24111
The separation of particles from a heterogeneous mixture is critical in chemical and biological analyses. Many methods have been developed to separate particles in microfluidic devices. However, the majority of these separations have been limited to be size based and binary. We demonstrate herein a continuous dc electric field driven separation of carboxyl-coated and noncoated 10 μm polystyrene beads by charge in a double-spiral microchannel. This method exploits the inherent electric field gradients formed within the channel turns to manipulate particles by dielectrophoresis and is thus termed curvature-induced dielectrophoresis. The spiral microchannel is also demonstrated to continuously sort noncoated 5 μm beads, noncoated 10 μm beads, and carboxyl-coated 10 μm beads into different collecting wells by charge and size simultaneously. The observed particle separation processes in different situations are all predicted with reasonable agreements by a numerical model. This curvature-induced dielectrophoresis technique eliminates the in-channel microelectrodes and obstacles that are required in traditional electrode- and insulator-based dielectrophoresis devices. It may potentially be used to separate multiple particle targets by intrinsic properties for lab-on-a-chip applications.  相似文献   

3.
Focusing cells into a single stream is usually a necessary step prior to counting and separating them in microfluidic devices such as flow cytometers and cell sorters. This work presents a sheathless electrokinetic focusing of yeast cells in a planar serpentine microchannel using dc-biased ac electric fields. The concurrent pumping and focusing of yeast cells arise from the dc electrokinetic transport and the turn-induced ac∕dc dielectrophoretic motion, respectively. The effects of electric field (including ac to dc field ratio and ac field frequency) and concentration (including buffer concentration and cell concentration) on the cell focusing performance were studied experimentally and numerically. A continuous electrokinetic filtration of E. coli cells from yeast cells was also demonstrated via their differential electrokinetic focusing in a serpentine microchannel.  相似文献   

4.
In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape.  相似文献   

5.
Wu L  Lanry Yung LY  Lim KM 《Biomicrofluidics》2012,6(1):14113-1411310
In this paper, a new dielectrophoresis (DEP) method based on capture voltage spectrum is proposed for measuring dielectric properties of biological cells. The capture voltage spectrum can be obtained from the balance of dielectrophoretic force and Stokes drag force acting on the cell in a microfluidic device with fluid flow and strip electrodes. The method was demonstrated with the measurement of dielectric properties of human colon cancer cells (HT-29 cells). From the capture voltage spectrum, the real part of Clausius-Mossotti factor of HT-29 cells for different frequencies of applied electric field was obtained. The dielectric properties of cell interior and plasma membrane were then estimated by using single-shell dielectric model. The cell interior permittivity and conductivity were found to be insensitive to changes in the conductivity of the medium in which the cells are suspended, but the measured permittivity and conductivity of cell membrane were found to increase with the increase of medium conductivity. In addition, the measurement of capture voltage spectrum was found to be useful in providing the optimum operating conditions for separating HT-29 cells from other cells (such as red blood cells) using dielectrophoresis.  相似文献   

6.
Hu N  Yang J  Qian S  Joo SW  Zheng X 《Biomicrofluidics》2011,5(3):34121-3412112
A microfluidic device integrated with 3D thin film microelectrode arrays wrapped around serpentine-shaped microchannel walls has been designed, fabricated and tested for cell electrofusion. Each microelectrode array has 1015 discrete microelectrodes patterned on each side wall, and the adjacent microelectrodes are separated by coplanar dielectric channel wall. The device was tested to electrofuse K562 cells under a relatively low voltage. Under an AC electric field applied between the pair of the microelectrode arrays, cells are paired at the edge of each discrete microelectrode due to the induced positive dielectrophoresis. Subsequently, electric pulse signals are sequentially applied between the microelectrode arrays to induce electroporation and electrofusion. Compared to the design with thin film microelectrode arrays deposited at the bottom of the side walls, the 3D thin film microelectrode array could induce electroporation and electrofusion under a lower voltage. The staggered electrode arrays on opposing side walls induce inhomogeneous electric field distribution, which could avoid multi-cell fusion. The alignment and pairing efficiencies of K562 cells in this device were 99% and 70.7%, respectively. The electric pulse of low voltage (~9 V) could induce electrofusion of these cells, and the fusion efficiency was about 43.1% of total cells loaded into the device, which is much higher than that of the convectional and most existing microfluidics-based electrofusion devices.  相似文献   

7.
This paper presents a mathematical model for laser-induced rapid electro-kinetic patterning (REP) to elucidate the mechanism for concentrating particles in a microchannel non-destructively and non-invasively. COMSOL®(v4.2a) multiphysics software was used to examine the effect of a variety of parameters on the focusing performance of the REP. A mathematical model of the REP was developed based on the AC electrothermal flow (ACET) equations, the dielectrophoresis (DEP) equation, the energy balance equation, the Navier-Stokes equation, and the concentration-distribution equation. The medium was assumed to be a diluted solute, and different electric potentials and laser illumination were applied to the desired place. Gold (Au) electrodes were used at the top and bottom of a microchannel. For model validation, the simulation results were compared with the experimental data. The results revealed the formation of a toroidal microvortex via the ACET effect, which was generated due to laser illumination and joule-heating in the area of interest. In addition, under some conditions, such as the frequency of AC, the DEP velocity, and the particle size, the ACET force enhances and compresses resulting in the concentration of particles. The conditions of the DEP velocity and the ACET velocity are presented in detail with a comparison of the experimental results.  相似文献   

8.
Li H  Ye T  Lam KY 《Biomicrofluidics》2011,5(2):21101
The motion trajectory and deformation behavior of a neutral red blood cell (RBC) in a microchannel subjected to an externally applied nonuniform electric field are numerically investigated, where both the membrane mechanical force and the dielectrophoresis (DEP) force are considered. The simulation results demonstrate that the DEP force is significantly influenced by several factors, namely, the RBC size, electrode potential, electric frequency, RBC permittivity, and conductivity, which finally results in the different behaviors of the cell motion and deformation in the nonuniform electric field.  相似文献   

9.
We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.  相似文献   

10.
Myoglobin is one of the premature identifying cardiac markers, whose concentration increases from 90 pg∕ml or less to over 250 ng∕ml in the blood serum of human beings after minor heart attack. Separation, detection, and quantification of myoglobin play a vital role in revealing the cardiac arrest in advance, which is the challenging part of ongoing research. In the present work, one of the electrokinetic approaches, i.e., dielectrophoresis (DEP), is chosen to separate the myoglobin. A mathematical model is developed for simulating dielectrophoretic behavior of a myoglobin molecule in a microchannel to provide a theoretical basis for the above application. This model is based on the introduction of a dielectrophoretic force and a dielectric myoglobin model. A dielectric myoglobin model is developed by approximating the shape of the myoglobin molecule as sphere, oblate, and prolate spheroids. A generalized theoretical expression for the dielectrophoretic force acting on respective shapes of the molecule is derived. The microchannel considered for analysis has an array of parallel rectangular electrodes at the bottom surface. The potential and electric field distributions are calculated using Green’s theorem method and finite element method. These results also compared to the Fourier series method, closed form solutions by Morgan et al. [J. Phys. D: Appl. Phys. 34, 1553 (2001)] and Chang et al. [J. Phys. D: Appl. Phys. 36, 3073 (2003)]. It is observed that both Green’s theorem based analytical solution and finite element based numerical solution for proposed model are closely matched for electric field and square electric field gradients. The crossover frequency is obtained as 40 MHz for given properties of myoglobin and for all approximated shapes of myoglobin molecule. The effect of conductivity of medium and myoglobin on the crossover frequency is also demonstrated. Further, the effect of hydration layer on the crossover frequency of myoglobin molecules is also presented. Both positive and negative DEP effects on myoglobin molecules are obtained by switching the frequency of applied electric field. The effect of different shapes of myoglobin on DEP force is studied and no significant effect on DEP force is observed. Finally, repulsion of myoglobin molecules from the electrode plane at 1 KHz frequency and 10 V applied voltage is observed. These results provide the ability of applying DEP force for manipulating nanosized biomolecules such as myoglobin.  相似文献   

11.
In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use λ (48.5 kbp) and T4GT7 (165.6 kbp) DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of 0.4 μm. Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical mechanism for the DNA polarization and dielectrophoresis inside confining channels, based on the observed dielectrophoresis responses due to different DNA sizes and various electric fields applied between the inlet and the outlet. The proposed physical mechanism indicates that further extensive investigations, both theoretically and experimentally, would be very useful to better elucidate the forces involved at DNA dielectrophoresis. When applied for size-based sorting of DNA molecules, our sorting method offers two major advantages compared to earlier attempts with insulative dielectrophoresis: Its continuous operation allows for high-throughput analysis, and it only requires electric field strengths as low as ∼10 V∕cm.  相似文献   

12.
In this paper, the translational motion and self-rotational behaviors of the Raji cells, a type of B-cell lymphoma cell, in an optically induced, non-rotational, electric field have been characterized by utilizing a digitally programmable and optically activated microfluidics chip with the assistance of an externally applied AC bias potential. The crossover frequency spectrum of the Raji cells was studied by observing the different linear translation responses of these cells to the positive and negative optically induced dielectrophoresis force generated by a projected light pattern. This digitally projected spot served as the virtual electrode to generate an axisymmetric and non-uniform electric field. Then, the membrane capacitance of the Raji cells could be directly measured. Furthermore, Raji cells under this condition also exhibited a self-rotation behavior. The repeatable and controlled self-rotation speeds of the Raji cells to the externally applied frequency and voltage were systematically investigated and characterized via computer-vision algorithms. The self-rotational speed of the Raji cells reached a maximum value at 60 kHz and demonstrated a quadratic relationship with respect to the applied voltage. Furthermore, optically projected patterns of four orthogonal electrodes were also employed as the virtual electrodes to manipulate the Raji cells. These results demonstrated that Raji cells located at the center of the four electrode pattern could not be self-rotated. Instead any Raji cells that deviated from this center area would also self-rotate. Most importantly, the Raji cells did not exhibit the self-rotational behavior after translating and rotating with respect to the center of any two adjacent electrodes. The spatial distributions of the electric field generated by the optically projected spot and the pattern of four electrodes were also modeled using a finite element numerical simulation. These simulations validated that the electric field distributions were non-uniform and non-rotational. Hence, the non-uniform electric field must play a key role in the self-rotation of the Raji cells. As a whole, this study elucidates an optoelectric-coupled microfluidics-based mechanism for cellular translation and self-rotation that can be used to extract the dielectric properties of the cells without using conventional metal-based microelectrodes. This technique may provide a simpler method for label-free identification of cancerous cells with many associated clinical applications.  相似文献   

13.
The present study uses the dielectrophoresis (DEP) and electrothermal (ET) forces to develop on-chip micromixers and microconcentrators. A microchannel with rectangular array of microelectrodes, patterned either on its bottom surface only or on both the top and the bottom surfaces, is considered for the analysis. A mathematical model to compute electrical field, temperature field, the fluid velocity, and the concentration distributions is developed. Both analytical and numerical solutions of standing wave DEP (SWDEP), traveling wave DEP (TWDEP), standing wave ET (SWET), and traveling wave ET (TWET) forces along the length and the height of the channel are compared. The effects of electrode size and their placement in the microsystem on micromixing and microconcentrating performance are studied and compared to velocity and concentration profiles. SWDEP forces can be used to collect the particles at different locations in the microchannel. Under positive and negative DEP effect, the particles are collected at electrode edges and away from the electrodes, respectively, irrespective of the position, size, and number of electrodes. The location of the concentration region can be shifted by changing the electrode position. SWET and TWET forces are used for mixing and producing concentration regions by circulating the fluid at a given location. The effect of forces can be changed with the applied voltage. The TWDEP method is the better method for mixing along the length of the channels among the four options explored in the present work. If two layers of particle suspension are placed side by side in the channel, triangular electrode configuration can be used to mix the suspensions. Triangular and rectangular electrode configurations can efficiently mix two layers of particle suspension placed side-by-side and one-atop-the-other, respectively. Hence, SWDEP forces can be successfully used to create microconcentrators, whereas TWDEP, SWET, and TWET can be used to produce efficient micromixers in a microfluidic chip.  相似文献   

14.
We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experimental results. The proposed device uses the so-called "liquid electrodes" design and can be used with low applied voltages, as low as 10 V(pp). The obtained separation is very efficient, the device being able to achieve a very high purity of platelets of 98.8% with less than 2% cell loss. Its low-voltage operation makes it particularly suitable for point-of-care applications. It could further be used for the separation of other cell types based on their size difference, as well as in combination with other sorting techniques to separate multiple cell populations from each other.  相似文献   

15.
This paper applies the lattice Boltzmann method (LBM) to a 3D simulation of micro flows in an expansion-contraction microchannel. We investigate the flow field under various inlet flow rates and cavity structures, and then systematically study the flow features of the vortex and Dean flow in this channel. Vortex formation analysis demonstrates that there is no observable vortex generated when the inlet flow rate is low enough. As the inlet flow rate increases, a small vortex first appears near the inlet, and then this vortex region will keep expanding until it fully occupies the cavity. A smaller cavity width may result in a larger vortex but the vortex is less influenced by cavity length. The Dean flow features at the outlet become more apparent with increasing inlet flow rate and more recirculation regions can be observed in the cross-section under over high inlet flow rate. In order to support the simulation results, some experimental processes are conducted successfully. It validates that the applied model can accurately characterize the flow in the microchannel. Results of simulations and experiments in this paper provide insights into the design and operation of microfluidic systems for particle/cell manipulation.  相似文献   

16.
Experiments show that particles smaller than the throat size of converging-diverging microchannels can sometimes be trapped near the throat. This critical phenomenon is associated with the negative dc dielectrophoresis arising from nonuniform electric fields in the microchannels. A finite-element model, accounting for the particle-fluid-electric field interactions, is employed to investigate the conditions for this dielectrophoretic (DEP) choking in a converging-diverging microchannel for the first time. It is shown quantitatively that the DEP choking occurs for high nonuniformity of electric fields, high ratio of particle size to throat size, and high ratio of particle’s zeta potential to that of microchannel.  相似文献   

17.
Electroconvection is known to cause strong convective mixing in a microchannel near a nanoporous membrane or a nanochannel in contact with an electrolyte solution due to the external electric field. This study addresses micromixer behavior subject to electroconvection occurring near a nanoporous membrane in-situ fabricated by a laser polymerization technique on a microfluidic chip. We found that the micromixer behavior can be categorized into three regimes. Briefly, the weak electroconvection regime is characterized by weak mixing performance at a low applied voltage and KCl concentration, whereas the strong electroconvection regime has a high mixing performance when the applied voltage and KCl concentration are moderately high. Finally, the incomplete electroconvection regime has an incomplete electric double-layer overlap in the nanopores of the membrane when the electrolyte concentration is very high. The mixing index reached 0.92 in the strong electroconvection regime. The detailed fabrication methods for the micromixer and characterization results are discussed in this paper.  相似文献   

18.
Focusing suspended particles in a fluid into a single file is often necessary prior to continuous-flow detection, analysis, and separation. Electrokinetic particle focusing has been demonstrated in constricted microchannels by the use of the constriction-induced dielectrophoresis. However, previous studies on this subject have been limited to Newtonian fluids only. We report in this paper an experimental investigation of the viscoelastic effects on electrokinetic particle focusing in non-Newtonian polyethylene oxide solutions through a constricted microchannel. The width of the focused particle stream is found NOT to decrease with the increase in DC electric field, which is different from that in Newtonian fluids. Moreover, particle aggregations are observed at relatively high electric fields to first form inside the constriction. They can then either move forward and exit the constriction in an explosive mode or roll back to the constriction entrance for further accumulations. These unexpected phenomena are distinct from the findings in our earlier paper [Lu et al., Biomicrofluidics 8, 021802 (2014)], where particles are observed to oscillate inside the constriction and not to pass through until a chain of sufficient length is formed. They are speculated to be a consequence of the fluid viscoelasticity effects.  相似文献   

19.
We present a new approach to enhance mixing in T-type micromixers by introducing a constriction in the microchannel under periodic electro-osmotic flow. Two sinusoidal ac electric fields with 180° phase difference and similar dc bias are applied at the two inlets. The out of phase ac electric field induces oscillation of fluid interface at the junction of the two inlet channels and the constriction. Due to the constriction introduced at the junction, fluids from these two inlets form alternative plugs at the constricted channel. These plugs of fluids radiate downstream from the constriction into the large channel and form alternate thin crescent-shaped layers of fluids. These crescent-shaped layers of fluids increase tremendously the contact surface area between the two streams of fluid and thus enhance significantly the mixing efficiency. Experimental results and mixing mechanism analysis show that amplitude and frequency of the ac electric field and the length of the constriction govern the mixing efficiency.  相似文献   

20.
This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号