首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设 f(x)=a_0x~n a_1x~(n-1) … a_(n-1)x a_n是n次实系数多项式,如果当x取非负整数值时,f(x)都是整数,则称f(x)是整值多项式。一个多项式什么时候是整值多项式呢?本文介绍一种简单的判定方法。先介绍一个引理。引理。设f(x)为n次多项式,则f(x)能唯一地表示成下面的形状:  相似文献   

2.
关于整系数多项式的整数根,有如下定理: 1.给定整系数多项式 f(x)=a_nx~2+a_(n-1)x~(n-1)+…+a_1x+a_0 (a_0≠0)如果r是f(x)的整数根、则r必是a_0的因子。由这个定理虽然可确定f(x)的可能的整数根的范围,但在某种情况下,范围是比较大的。所以有必要把这个“可能零点”的个数尽量减少。《中学数学教学》1983年第2期发表的“整数根定理的改进”一文,对定理1作了改进。使可能的整数根的范围大大缩小。该译文的定理如下:  相似文献   

3.
我们熟知整数的哥德巴赫命题是:每一个大于2的偶数都可写成两个质数的和。这个命题的正确性至今尚未得到证明。在《数学爱好者》1980,1期刊载的《容易证明的“1 1”》(以下简称文[1])一文中提出了一个有兴趣的定理: 定理1.每一个整系数n(≥1)次多项式可写为两个n次不可约整系数多项式的和。这个定理的证明依赖于下述整系数多项式不可约的艾森施坦因判定法则定理2.整系数多项式 f(x)=a_0x~n a_1x~(n-1) … a_(n-1)x a_n (1)  相似文献   

4.
多项式理论是高等代数的重要内容之一,在研究有理系数多项式的因式分解时,有下述定理:设f(x)=a_nx~n+a_(n-1)x~(n-1)+……+a_1x+a_0是n次整(数)系数多项式,如果有一个素数P,使:  相似文献   

5.
思考题(九)     
题31.已知一个 n 次多项式f(x)=a_0x~n+a_2x~(n-1)+a_2x~(n-2)+…+a_n,其中 a_0,a_1,…,a_n 都是整数,且 a_0≠0.又已知用 x-a、x-b、x-c、x-d(这里a、b、c、d 是各不相等的整数)分别除f(x)的余数都是2,求证对于任何整数 x,f(x)的值不能等于3、5、7、9中的任何一个数。(杨绶)题32.求方程 y~3-y=x~3+3x~2+2x 的全部自然数解。题33.在平面上有五点 A、B、P、Q、R,A、B 为定点,P、Q、R 为动点。其中  相似文献   

6.
多项式有一个重要的定理: 如果使多项式f(x)=a_0x~n+a_1x~(n-1)+…+a.的值为零的不同x值(在复数域内)多于n个,那么a_0=a_1=…=a_n=0。(即f(x)≡0) 这个定理很有用。下面我们只就它的最  相似文献   

7.
多项式理论是代数学的一个重要组成部分,有关多项式方面的问题常常被用作数学竞赛的试题.本文仅就数学竞赛中求解满足某些条件的多项式归纳几种方法介绍如下.1.从分析根的情况入手设n∈N,a_0,a_1,…,a_n∈C(或R,或Z)且a_n≠0,称f(x)=a_nx~n a_(n-1)x~(n-1) … a_0(1)为复(或实、或整)系数一元n次多项式.多项式的次数常记为degf(x)=n.单独的一个非零常数,叫做零次多项式;系数a_0,a_1,…,a_n全为零的多项式叫做零多项式.若数x_0满足f(x_0)=0,则称x_0为多项式f(x)的根.由代数基本定理:复系数一元n次多项式f(x)有…  相似文献   

8.
零多项式     
设R是实数集,则R上x的一元多项式一般可定义成: a_nx~n+a_(n-1)x~(2-1)+…+a_1x+a_0 ①此处a_1∈R(i=0,1,2,…,n)。n,n-1,…,是非负整数。多项式①可用符号f(x),g(x),…等记之。若a_n≠0,则称多项式①的次数为n。基于这个定义,六年制重点中学高中课本《代数》第一册提出“数零称为零多项式,我们不规定它的次数”。显然,这一讲法是合理的,与a_n≠0的要求一致。我们可用R[x]来记R上面x的一元多项式的全体,零多项式(以下简记成0)在R[x]中关于多项式的加法和乘法运算具有性质:任意f(x)∈R[x]有  相似文献   

9.
多项式这一概念,应如何理解?北大编《高等代数》是这样定义的:设x是一个符号(或称文字),n是一个非负整数。形式表达式 a_nx~n+a_(n-1)x~(n-1)+…+a_1x+a_0 (1)其中a_0,a_1,…,a_n全属于数域P~*,称为系数在数域P中的一元多项式,或者简称为数域P上的一元多项式。既然x是一个符号,因此x,x~2,…,x~n以及式子a_nx~n,a_(n-1)x~(n-1),…,a_1x与连接这些式子的符号“+”,都应看作没有赋予  相似文献   

10.
当x为非零有理数时,应用综合除法和余数定理求有理系数整次多项式 f(x)=a_nx~n+a_(n-1)x~(n-1)+…+a_1x+a_0(a_n≠0) (1)的值总是可行的,有时还比较简便。但当x=3+2~(1/3)/2或2-3~(1/2)i一类无理数或虚数时,简单地用综合除法求(1)式的值就不可行了。计算这类值通常采用代入法,用二项式定理展开、合并(同类项或同类根式)、化简。但当n值较大时,用这种方法计算很  相似文献   

11.
一、用矩阵分解多项式的一次因式:定理:n次多项式f(x)=a_0x~n+a_1x~(n-1)…+a_n在数域R中有一次因式的充要条件是存在一个秩为1的2×n阶矩阵A=(a_0 a_(11) a_(21)……a_(n-2.1) a_(n-1.1) (a_(12) a_(22) a_(32)……a_(n-1.2) a_n)  相似文献   

12.
由高中代数(甲种本)第三册第19页的定理:“复系数一元n次方程在复数集C中有且仅有n个根(k个重根算作k个根)”,可以引出推论: 使复系数多项式f(x)=a_0x~n a_1x~(n-1) … a_n之值为零的相异x值如多于n个,则a_0=a_1=a_2=…=a_n=0(即f(x)≡0)。(*) 推论(*)易由反证法证明。因为若a_0≠0,则由定理可知,满足f(x)=0的不同x值最多有n个,这与己知使f(x)的值为零的不同x值多于n个相矛盾。所以,a_0=0。同  相似文献   

13.
(一)问题的提出在不少数学资料和一些试题中,经常出现这样一类有关整除性的问题:设p(n)=a_0n~k a_1n~(k-1) …… a_k(a_0≠0)…………………(i) 是一个关于整数n的多项式(其中,k为正整数,a_0,a_1,……a_k均为整数)。需要判定p(n)是否能够被整数m(m≠0和1)整除?(所谓整除,是指对一切整数n,p(n)均能被m整除)。例如 (1)试证:n~3-3n~2 2n-6能被6整  相似文献   

14.
本文将给出一个有关组合数与多项式的有趣的恒等式。对于p次多项式f(x)及组合数C_n~i,可构造出组合恒等式; sum from i=0 to n(-1)~iC_n~if(i)=0(1)这里的p为非负整数,且p相似文献   

15.
初中课外讲座,作者鲁有专。任给n位整数k,在10进位制中,可表为10的n-1次多项式:k=10~(-1)·a_1 10~(n-2)·a_2 … 10·a_(n-1) a~n,a_i∈{0,1,…,9},i=1,2,…,n,a_1≠0;在b进位制中,又可表为k=b~(n-1)·a_1 b~(n-2)·a_2 … b·a_(n-1) a_n,a_i∈{0,1,…(6-1)},i=1,2,…,n,a_1≠0。整数的多项式表示,在解决某些数学竞赛题时是一个有效的方法,运用时又有若干技巧,本文在这方面将给您以启迪。  相似文献   

16.
设π是有理数,即它为二正整数a与b的商a/b:作多项式: f(x)=(x~n(a-bx)~n)/n!, F(x)=f(x)-f~((2))(x)+f~((4))(x)-…+(-1)~nf~((2n))(x),这里正整数n将由后面来确定。因为n!f(x)是x的整系数多项式,且各项x的次数都不小于n,故对x=0时,f(x)及其各阶导数f~((i))(x)的值均为整数,又因f(x)=f(a/b-x),故对x=π=a/b时,它们的值也都是整数。于是由初等微积分的知识,我们有  相似文献   

17.
数是代数武的特殊情形,而代数式则是数的延续、扩张和发展.我认为利用x=10时(x)的值去寻求形如 f(x)=a_nx~n+a_(n-1)x~(n-1)+…+a_1x+a_0的有理整式的因式是完全可能的. 例1.将多项式x~8+x~7+1分解因式. 解设x=10,则 x~8+x~7+1=10~8+10~7+1 =110000001 =3×37×990991. 这三个数均为质数.再用x=10代回,那么,3必然是x-7,37必是3x+7或4x-3.  相似文献   

18.
中学代数讲过二元二次方程组的特殊解法.本文介绍二元高次方程组的一般解法.为此,先讨论两个一元多项式有公根的条件.一、结式的概念令f(x)=a_0x~n a_1x~(n-1) …… a_n(n>0)g(x)=b_0x~m b_1x~(m-1) …… b_m(m>0)是复数域c上两个一元多项式.在这里,我们并不假定a_0≠0,b_0≠0,这一点以后就可看出  相似文献   

19.
要求f(x)与g(x)的最大公因式,只需构造出一个φ: 有(f(x),g(x))—(k(x),0)=k(x) 关键是在某个φ作用下求出k(x)令:f(x)=a_nx~n a_(n-1)x~(n-1) … a_0 (a_n≠0) g(x)=b_mx~m b_(m-1)x~(m-1) … b_0 (b_m≠0)  相似文献   

20.
本文旨在 :(1)用有理数域多项式矩阵证明以下定理 :设Z代表整数环 ,Z[  ]代表整数系数多项式环 (我们简称整系数多项式环 ) ,定理 :设f1;f2 ;…fn 是Z[x]中一组 (n个 )元素 ,d是它们的最大公因式 ,则Z[x]中一定有一组相应的元素q1;q2 ;…qn,使得 :d =f1·q1 f2 ·q2 … fn·qn.(2 )用矩阵来计算若干个整系数多项式的最大公因式 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号