首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
(一)两种积分的可积性差异及原因黎曼积分存在的必要条件是被积函数有界,但有界函数不一定 R 可积。例如:狄利克雷函数:D(x)={1,x 为[0,1]内有理点 0,x 为[0,1]内无理点在[0,1]上有界,但非 R 可积。那么,函数 R 可积的充要条件是什么呢?在数学分析中已证得在闭区间上有界函数 R 可积的充分条件  相似文献   

2.
二次函数 f(x)=ax~2+bx+c.(a≠0,x∈R)(1)是初等数学里最常见的函数,它的应用很广。本文将介绍二次函数的一个特性及其应用。 (一)二次函数的一个特性我们知道,二次函数 f(x)=ax~2+bx+c.(a≠0,x∈R)在任何一个闭区间[ξ,η]上连续,且在开区间(ξ,η)上可导(ξ∈R,η∈R,)。因此,微分中值定  相似文献   

3.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

4.
直观上,覆盖[0,1]区间的所有有理点的一列区间也必然覆盖无理点,从而覆盖[0,1]整个区间。文章从外测度的定义、性质出发,讨论了有理数的稠密性以及区间[0,1]上的有理数外测度的问题,从几个侧面解释上述直观的错误。给出覆盖了所有有理点的区间列但不能覆盖无理点的例子。  相似文献   

5.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

6.
在一般的教材中,三个中值定理的证明顺序依次为 Rolle 定理、Lagrange 定理和 Cauchy 定理。本文按与上述完全相反的顺序给出证明,使整个证明显得比较简捷。定理一若 f(x),g(x)满足1°在[a,b]上连续;2°在(a,b)内可导,则存在一点ξ(ξ∈(a,b)),使  相似文献   

7.
用作辅助函数来证明一些结论,是数学分析的一个重要手段和技巧,师范院校的学生懂得和掌握这种技巧是一件有益的事情.现以数例说明.一、关于函数介值的问题一些涉及到函数介值的问题,可以用辅助函数加以解决.[例1]设函数f(x)在[0,1]上可导,且00,F(1)=f(1)-1<0,而F(x)在[0,1]上是连续函数,依介值定理知(?)x_0∈(0,1),使F(x_0)=0,即f(x_0)=x_0  相似文献   

8.
数学通报1981年第一期介绍了发表在《美国数学月刊》上的Rolle定理的两个新证明。正如编译者指出,Rolle定理的证明在许多数学分析教程中大多千篇一律,多年不变(几乎都要用最大(小)值定理)。《美国数学月刊》上的第一个证明是构造性的,第二个证明应用了两个现成的命题: (a)如果f(x)在闭区间[c,d]上连续,且f(c)=f(d),那么存在α,β∈[c,d]满足β-α=c-d/2,及f(α)=f(β); (b)如f(x)在某内点x可微,那么对于任意两个序列α_n,β_n满足α_n≤x≤β_n,  相似文献   

9.
文[1]中的定理3给出了结论(ii)满足(1)式的中间点ξ=ξ(x)是x的可导函数,其导数为ξ′(x)=f′(x)g′(ξ(x)-f′(ξ(x))g′(x))(x-a)[f″(ξ(x))g′(ξ(x))-f′(ξ(x))g″(ξ(x))]。文[1]在推导此等式时用到了柯西中值定理,本文指出在推导过程中使用柯西中值定理存在的问题,并给出例子对存在的问题作出详细的说明。  相似文献   

10.
本文着重说明应用微分中值定理证明不等式时,函数f(x)的选取方法,介绍一些用初等数学方法不易证明的或证明步骤较繁的不等式,而用微分中值定理可以简捷地解决的情形,其中关键是要选择好函数f(x)。微分中值定理是:“若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在开区间(a,b)内至少有一点ξ,使得 f′(ξ)=(f(b)-f(a))/(b-a)”。用微分中值定理证明不等式的主要依据是选定符合微分中值定理条件的函数f(x)后,若在所讨论的区间内有m相似文献   

11.
在一般教科书中积分中值定理都叙述为:设f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则存在ξ∈[a,b),使得 (integral from n=a to b)f(x)g(x)dx=f(ξ)(integral from n=a to b)g(x)dx。杨新民在[1]中提出了相反的问题:若f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,对[a,b)内每一点ξ能否找到c,d∈(a,b),满足c<ξ相似文献   

12.
微分中值定理中"中值点"ξ的分析性质   总被引:1,自引:0,他引:1  
研究微分中值定理中“中值点”ξ=ξ(x)的单调、连续,可导等分析性质,给出“中值点”ξ=ξ(x)单调、连续和可导的一组充分条件.  相似文献   

13.
一、平面上任给n个点,每两点之间有一个距离,最大距离与最小距离的比maxA_iA_j/minA_iA_j记为λ_n,关于λ_n的下述讨论: 1.λ_n≥2~(1/2)/2[n~(1/2)] [1]中没有注意到函数[x]在x为整数处的不连续性,所以[1]中其实只对n不是完全平方数时证明了结论(见[1]中小文注)。 2.λ_n≥n/3~(1/2) [2]中原题为 maxP_iP_j≤(n/3)~(1/2)minP_iP_j。此不等式显然不成立。如取P_1、P_2,使P_1P_2  相似文献   

14.
积分中值定理在一般的《数学分析》教材中是这样叙述的:当f(x)在[a,b]上连续时,有baf(x)dx=f(ξ)(b-1),其中ξ∈[a,b}本将对该结论做一点推广,即当f(x)在[a,b]上连续时,有baf(x)dx=f(ξ)(b-a),其中g∈(a,b)。  相似文献   

15.
考虑带p-Laplacian算子的四阶四点边值问题(φp(u″(t)))″+f(t,u(t),u″(t))=0,t∈[0,1],u(0)=0,u(1)=au(η),u″(0)=0,u″(1)=bu″(ξ{),其中φp(s)=sp-2s,p>1;0<ξ,η<1;0相似文献   

16.
2002年全国高考北京卷第12题如下: 题目:如图(1)所示,fi(x)(I=1,2,3,4)是定义在[0,1]上的四个函数,其中满足性质:"对[0,1]中的任意x1和x2,任意λ∈[0,1],f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)·f(x2)恒成立"的只有( ).  相似文献   

17.
一般数学分析课本上对定积分的第一中值定理是这样叙述的:定理1 若函数f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则在[a,b]上存在一点ξ使得而这个定理在(1)中却是这样叙述的:定理2 若函数f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则在开区间(a,b)内存在一点ξ,使  相似文献   

18.
文[1]在F=Q上讨论了f(x)与f(xm)的Galois群的阶的问题。本文我们就f=Q(ξ),A∈Mn(F),f(x)是分圆域Q(ξ)上矩阵A的n次不可约特征多项式,g(x)=xm-a∈F(x),以f(x)与f(g(x))的Galois群的阶来进一步讨论g(X)=A有解的一个条件。  相似文献   

19.
“若函数f(x)与g(x)满足下列条件:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,且对任意x∈(a,b),g′(x)≠0。则在(a,b)内至少存在一点ξ,使 (f(b)-f(a))/(g(b)-g(a))=f′(ξ)/g′(ξ) (*)” 众所周知,这是微分学的基本定理之一:柯西中值定理((*)式称为微分中值公式)。关于它的证明,关健是在于恰当地构造一个辅助函数,再利用罗尔定理。一般教科书上构造的辅助函数是:F(x)=f(x)-f(a)-(f(b)-f(a))/(g(b)-g(a))[g(x)-g(a)]  相似文献   

20.
许多数学分析教科书在中值定理这一部分内容中都讲到了下面的一道例题,且证法类似(参见[1]、[2])。笔者认为,这道例题的结论是对的,但这些证明是不完全的。本文先指出其证明缺陷之所在,再给出严密的证明。为了便于讨论,先将[1]中第209页例4抄录如下: 例如果函数f(x)在点α的邻域内连续,除α外可导,且(?)f′(x)=ι,则函数f(x)在点α可导,且f(α)=ι。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号