首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
1 解析法 解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等). 例1(2007年四川文科卷.10题)已知抛物线y=-x2 +3上存在关于直线x+y=0对称的相异两点A,B,则|AB|等于(). A.3 B.4 C.3√2 D.4√2 分析:直线AB必与直线x+y=0垂直,且线段AB的中点必在直线x+y=0上,因得解法如下. 解析:∵点A,B关于直线x+y=0对称,∴设直线AB的方程为y=x+m.  相似文献   

2.
例直线l:y=-1/2x 2与椭圆(x2)/(a2) (y2)/(b2)=1交于A、B两点,O为坐标原点,M为线段AB的中点.若|AB|=5~(1/2),直线OM的斜率为1/2,求椭圆的方程.  相似文献   

3.
1.定义:如果一条直线l交圆锥曲线C于A、B两点,则称直线l为圆锥曲线C的割线. 2.公式:设A(x1,y1)、B(x2,y2)、AB的中点N(x0,y0). 椭圆:x2/a2+y2/b2=1的割线AB,则kAB=-b2x0/a2y0. 双曲线:x2/a2-y2/b2=1的割线AB,则KAB=  相似文献   

4.
2005年上海市高考春招第22题: (1) 求右焦点坐标是(2,0),且经过点(-2,-2)的椭圆的标准方程; (2) 已知椭圆C的方程是x2/a2 y2/b2=1(a>b>0).设斜率为k的直线l,交椭圆C于A、B两点,AB的中点为M.证明:当直线l平行移动时,动点M在一条过原点的定直线上;  相似文献   

5.
性质椭圆x2a2+y2b2=1(a>b>0)上任意一点P与过中心的弦AB的两端点A、B的连线PA、PB与对称轴不平行,则直线PA、PB的斜率之积为定值.证明如图1所示,设P(x,y),A(x1,y1),则B(-x1,-y1).∴x2a2+y2b2=1,①∴x21a2+y21b2=1,②由①-②得x2-x21a2=-y2-y21b2,∴y2-y21x2-x21=-b2a2,∴KPA·KPB=y-y1x-x1·y+y1x+x1=y2-y21x2-x21=-b2a2为定值.这条性质是圆的性质“圆上一点对直径所张成的角为直角”在椭圆中的推广,它充分揭示了椭圆的本质属性,因而能简洁地解决问题.推论若M是椭圆的弦AB之中点,则直线OM与直线AB的斜率之积为定值.证明如图2所…  相似文献   

6.
《中学生阅读》2008,(7):19-21
[例36]过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为√2/2的椭圆C相交于A,B两点,直线y=1/2x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.  相似文献   

7.
题目已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:y=kx m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.若设椭圆C的右顶点是A2,则△ABA2为直角三角形.利用一般化、特殊化、类比的思维方法,可以发现椭圆内接直角三角形的一个性质.性质椭圆x2a2 y2b2=1(a>b>0),A2(a,0),直线l与椭圆交于A,B两点,若AA2⊥BA2,则直线l过定点Ma(a2-b2)a2 b2,0.证明设直线AA2:y=k(x-a),联立y=k(x-a),x2a2 y2b2=…  相似文献   

8.
题已知椭圆的方程为x2/4 y2/2=1,点A 的坐标(1,1). (1)A为直线l与椭圆两交点的中点,求l 的方程; (2)求过点A的直线与椭圆的两交点的中点的轨迹方程.解 (1)设l与椭圆的交点分别为 (x1,y1),(x2,y2)(x1≠x2), 代入椭圆方程得  相似文献   

9.
每期一题     
题:已知椭圆C的直角坐标方程为(x~2/4) (y~2/3)=1,试确定m的取值范围,使得对于直线y=4x m,椭圆C上有不同的两点关于该直线对称。依题意归纳起来此题条件有三:①保证椭圆上确实存在不同两点A、B;②A、B的中点坐标满足直线方程y=4x m;③A、B两点连线的斜率与直线y=4x m的斜率的乘积为-1。  相似文献   

10.
1.已知非空集合A={x|x2-4mx 2m 6=0,x!R},若A∩R-≠!,求实数m的取值范围.(R-表示负实数)2.关于x的方程x3-3x2-a=0有3个不同的实数解,求实数a的取值范围.3.已知a!R,求函数y=(a-sinx)(a-cosx)的最小值.4.当n!N且n≥3时,求证:n 13 n 14 … 2n1 2>1130.5.已知定点(M-1,2),直线l1:y=(a x 1),曲线C:y=$x2 1,l1与C交于A,B两点.记线段AB的中点为N,直线l2经过M,N两点,且在x轴上的截距为m,将m表示成a的函数,并求此函数的定义域.6.已知向量u=(x,y)和向量v=(y,2y-x)的对应关系可用v=f(u)表示.(1)已知a=(1,1),b=(1,0),求f(a),f(b)的坐标.(2)求…  相似文献   

11.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

12.
题目:定长为3的线段AB的端点A、B在抛物线y=x2上移动,求AB的中点M到x轴距离的最小值.某同学对此题有以下两种解法.解法1:设A(x1,y1)、B(x2,y2)、M(x0,y0),x1≠x2,则由中点公式得,y0=y12 y2=x212 x22≥-x1x2.当且仅当x1=-x2(不妨设x1>0,x2<0),即A、B为抛物线上关于y轴对称的两点  相似文献   

13.
在平面解析几何中经常见到与对称相关的问题,而与对称相关问题中最基本的有以下四类:点关于点对称;点关于直线对称;直线关于点对称;直线关于直线对称·下面“将数的问题结合形的特点”介绍它们的解题方法·一、点关于点对称求P(a,b)关于点M(m,n)的对称点Q解析:设Q(x,y),结合图形分析·点M一定是线段PQ的中点,由中点坐标公式可得m=a2+x,n=b+2y,得x=2m-a,y=2n-b.∴Q(2m-a,2n-b)【例1】已知点A(1,2),点B(2,3),求点A关于点B的对称点·解:(利用中点坐标公式)设点A关于点B的对称点为A,(x1,y1)则1+2x1=2,2+2y1=3,∴x1=3y1=4∴点A关于点B的对…  相似文献   

14.
命题:若直线y=kx+m与双曲线x2/a2-y2/b2=1相交于A,B两点,M(x0,y0)为AB的中点,则b2x0-ka2y0=0. 证明:设A(x1,y1),B(x2,y2), 则x1+x2=2x0,y1+y2=2y0,y2-y1/x2-x1=k 由于A、B两点在双曲线上得: x12/a2-y12/b2=1 ①,x22/a2-y22/b2=1②  相似文献   

15.
设A(x1,y1),B(x2,y2)是圆锥曲线上不同的两点,G(xA,yB)是线段AB的中点,kAB是AB弦所在直线的斜率.则有:(1)椭圆(x2)/(a2)+(y2)/(b2)=1,kAB=-(b2xA)/(a2yB)(2)双曲线三(x2)/(a2)-(y2)/(b2)=1,kAB=-(b2xA)/(a2yB);(3)抛物线y2=2px(p>0),kAB=P/(yA).证明:(1)因A、B两点在椭圆(x2)/(a2)+(y2/b2)=1上,所以有  相似文献   

16.
数学中充满了对称,对称美是数学美的重要特征之一.直线中的对称问题,是直线方程中最基本的问题,也是历年高考中考查的热点问题,常见的直线对称问题有以下3种类型:1点关于直线的对称问题例1求点P(-4,3)关于直线l:2x 3y-6=0的对称点P′的坐标.解设P′的坐标为(x,y),则线段PP′的中点坐标为x2-4,32 y.PP′的斜率为yx- 43,直线l的斜率为-32.因为PP′⊥l且PP′的中点在l上,所以y-3x 4·(-23)=-1,2·x2-4 3·y2 3-6=0x=-1332,y=1639·即P′的坐标为-1323,1639.2直线关于点的对称问题例2求直线l:3x-y 1=0关于点M(2,-4)对称的直线方程.解在所…  相似文献   

17.
一题目设椭圆的中心在原点,焦点在x轴上,离心率e=1/2,经过M(-1,3/2). 若此椭圆上有两个不同的点P、Q关于直线l:y=4x+m对称.求m的取值范围. 这题,主要考查直线与圆  相似文献   

18.
对于椭圆x2/a2+y2/b2=1,令x’=x/a,y’=y/b,则椭圆方程变为:x’2+y’2=. 1,此为单位圆方程.这样,椭圆问题就可充分利用圆的性质来解决了.举例说明. 例1若直线l:x+2y+t=0与椭圆C:x2/9+y2/4=1相交于两点,求t 的取值范围. 解:令x=3x’,y=2y’,则椭圆C和直线l分别变成圆C’:x'2+y'2= 1和直线l':3x’+4y’+t=0.  相似文献   

19.
受文献[1]的启发,本文给出圆锥曲线(椭圆、双曲线、抛物线)垂直于焦点所在对称轴的直线(简称“垂轴线”)的一个性质,并应用性质证明两组“姊妹”结论. 1 一组性质 性质1 已知椭圆Γ:x2/a2+y2/b2=1(a>b>0)与x轴交于A、B两点,直线l:x=m(| m |≠a)是垂直于x轴的一条定直线,P是椭圆Γ上异于A、B的任意一点,若直线PA交直线l于点M(m,y1),直线PB交直线l于点N(m,y2),则y1y2为定值b2/a2(a2-m2).  相似文献   

20.
1命题命题1若A B是椭圆22C1:ax2+by2=1的一条弦,且弦AB的中点为M(xM,y M),则椭圆22222C:(2x M x)(2y My)a b?+?=1经过A、B两点.证明设点A(x A,y A)、B(x B,y B),则由M是弦AB的中点,可知,x B=2x M?xA,y B=2y M?yA,由点B在椭圆C1上,知(2x M?x A)2/a2+(2y M?y A)2/b2=1,所以点A在椭圆C2上.同理可知点B也在椭圆C2上,故椭圆C2经过A,B两点.类似地有:命题2若AB是双曲线22C1:ax2?by2=1的一条弦,且弦AB的中点为M(xM,y M),则双曲线22222C:(2x M x)(2y My)1a b???=经过A,B两点.命题3若AB是抛物线y2=2px的一条弦,且弦AB的中点为…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号