首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
试题呈现设x,y,z>0且满足x2+y2+z2=3,求证xyz(x+y+z)+2021≥2024xyz①.式①形式简洁优美,四川成都西华中学的张云华老师给出了如下证明:由基本不等式得x2+y2+z2≥33√x2y2z2,则33√ x2y2z2≤3,04√xyz·1/xyz+2020xyz=2024xyz.  相似文献   

2.
一个不等式的初等证明   总被引:1,自引:0,他引:1  
文 [1]给出并用微分法证明了如下不等式 :已知 x,y,z∈ (0 ,+∞ ) ,且 x+ y+ z=1,则(1x- x) (1y- y) (1z- z)≥ (83 ) 3 . (1)受此启发 ,笔者经探索得出如下一个初等证明 .证明 由基本不等式易得xyz+ yzx≥ 2 y,yzx+ zxy≥ 2 z,zxy+ xyz≥2 x.将上述三个不等式相加得xyz+ yzx+ zxy≥ x+ y+ z=1. (2 )又由 1=x+ y+ z≥ 3 3 xyz,得 xyz≤12 7.∴ (1x- x) (1y- y) (1z- z) =1xyz· (1- x2 ) (1- y2 ) (1- z2 ) =1xyz[(1+ x) (1+ y)(1+ z) ][(1- x) (1- y) (1- z) ]=1xyz(2 +xy+ yz+ zx+ xyz) (xy+ yz+ zx- xyz) =2(1x+ 1y+ 1z) - 2 + (xy+ yz+…  相似文献   

3.
△ABC的内切圆、外接圆半径分别为r,R,大家知道有著名的Euler公式:R≥2r. 上述公式证明方法有多种,本文将给出△ABC中内切圆代换下的证明. 为此,我们先给出有关内切圆的一些基本知识点,这些在不等式证明中时是极其有用的. 如图1,设a=x+y,b=y+z,c =z + x,△ABC的内切圆、外接圆半径分别为r,R,面积为S,半周长p=a+b+c/2=x+y+z,由海伦公式知S=√p(p-a)(p-b)(p-c) =√xyz(x+y+z),注意到S=pr=a+b+c/2 r,故r=S/P=√xyz/x+y+z,而S=1/2absinC=abc/4R,故R=abc/4S=(x+y)(y+z)(z+x)/4√xyz(x+y+z),故=R/2r=(x+y)(y+z)(z+x)/8xyz≥8xyz/8xyz=1,故R≥2r.  相似文献   

4.
一道2010年瑞士数学奥林匹克不等式的证明   总被引:1,自引:0,他引:1  
一道2010年瑞士数学奥林匹克试题如下:已知x、y、z>0,xyz=1,求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z.证因为x、y、z>0,  相似文献   

5.
题目:设x+y+z=xyz,(x>0,y>0,z>0)求证:2(x2+y2+z2)-3(xy+yz+xz)+9≥0文[1]中用三角函数知识来证明,且证明繁琐,文[2]用换元的方法,然后利用第25届IMO试题的结论:若x≥0,y≥0,z≥0,且x+y+z=1,则xy+yz+xz-2xyz≤727来证明也是不简单,实际上利用拙文[3]中提出的证明不等式化齐次的策略可简单地给出证明.证明:因x+y+z=xyz,原不等式等价于2(x2+y2+z2)(x+y+z)-3(x+y+z)(xy+yz+xz)+9xyz≥02(x3+y3+z3)+2x(y2+z2)+2y(x2+z2)+2z(x2+y2)-3x(y2+z2)-3y(x2+z2)-3z(x2+y2)-9xyz+9xyz≥02(x3+y3+z3)-x(y2+z2)-y(x2+z2)-z(x2+y2)≥0(x+y)(x-y)2+(y+z)(y-z…  相似文献   

6.
题目 已知x、y、z>0,xyz=1.求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z. 在文[1]中,作者给出的证法虽好,但不利于推广.本文中笔者给出此不等式的四种证法及推广.  相似文献   

7.
题目正实数x、y、z满足xyz≥1.证明: x5-x2/x5+y2+y5-y2/y5+z2+x2+z5-z2/z5+x2+y2≥0.  相似文献   

8.
先看下面不等式的证明过程:设x、y、z是非负实数,且满足x+y+z=1,求证:4(xy+yz+zx)-9xyz≤1。 证明:由对称性,不妨设x≥y≥z,则0≤z≤1/3,进而知4-9z>0。  相似文献   

9.
题目设x,y,z∈(0,+∞)且2 2 2x+y+z=1,求函数f=x+y+z xyz的值域.这是一道《美国数学月刊》征解题,文[1]运用三角代换及导数给出了此题的一个解法,文[2]给出求f上界的抽屉原则的解法,文[3]给出了幂平均不等式的解法.此题运用初等数学的知识来解难度都比较大,下面以高等数学中的拉格朗日乘数法为突破口,给出此题的一个简单解法.解设拉格朗日函数为L(x,y,z,λ)=x+y+z2 2 2xyzλ(x+y+z 1),对L求偏导数,并令它们都等于0,则有1 2 01 2 0L yz x x L xz yλλ====,,2 1(1)yz xλ+=,,  相似文献   

10.
第39届 IMO 预选题:设 x,y,z 是正实数,且 xyz=1,求证:x~3/((1 y)(1 z)) y~3/((1 x)(1 z)) z~3/((1 x)(1 y))≥3/4.文[1]给出了这个不等式的四个推广:命题1 设 x,y,z 是正实数,且 xyz=1,λ是常数且λ≥0,则x~3/((λ y)(λ z)) y~3/((λ x)(λ z)) z~3/((λ x)(λ y))≥3/((1 λ)~2).命题2 设 x,y,z 是正实数,且 xyz=1,m 是正整数且m≥3,则x~m/((1 y)(1 z)) y~m/((1 x)(1 z)) z~m/((1 x)(1 y))≥3/4.  相似文献   

11.
定理:如果x,y,z∈R+,那么x3+y3+z3+3xyz≥x2y+x2z+y2x+y2z+z2x+z2y(当且仅当x=y=z时取"="号)  相似文献   

12.
<正>令s=x+y+z,p=xy+yz+xz,q=xyz,则三元轮换对称式f(x,y,z)都可以用s,p,q表示。本文举例说明spq代换在数学竞赛中的应用。1一组常见的spq恒等式(1)x2+y2+z2=s2-2p;(2)(x+y)(y+z)+(y+z)(z+x)+(z+x)·(x+y)=s2+p;(3)x3+y3+z3=s3-3sp+3q;(4)(x+y)(y+z)(z+x)=sp-q;(5)xy(x+y)+yz(y+z)+zx(z+x)=sp-3q;(6)x2(y+z)+y2 (z+x)+z2 (x+y)=sp-3q;(7)x2y2+y2z2+z2x2=p2-...  相似文献   

13.
1.利用"1=1n"例1设x,y,z∈R+,且x+y+z=1,求证:x2+y2+z2+2(3xyz)1/2≤1.分析注意到原不等式左、右边式子中指数的差异及条件x+y+z=1,故把不等式右边的"1"构造为1=12=(x+y+z)2.证明原不等式可转化为  相似文献   

14.
得到了不定方程x3+y3+z3-3xyz=Π m i=1 ni的整数解与不定方程x3+y3+z3-3xyz=ni(i=1,2,…,m)的整数解的关系,并举例给出了应用。  相似文献   

15.
整式加减中的“无关”型问题是今年中考的热点题型,有很多省市的中考题涉及该类型,有关此类考题,从形式上可以分为以下两类: 一、直接“无关”型 例1代数式( xyz2-4yx-1)+(3xy+ z2yx-3)-(2xyz2+ xy)的值是(). A.与x、y、z的大小无关B.与x、y的大小有关,而与z的大小无关 C.与x的大小有关,与y、z的大小无关D.与x、y、z的大小都有关 解:(xyz2-4yx-1)+(3xy+ z2yx-3)-(2xyz2+xy) =xyz2-4yx-1+3xy+ z2yx-3-2xyz2-xy =-2xy-4, 所以代数式的值只与x、y的大小有关,而与z的大小无关,故应选B.  相似文献   

16.
正第49届国际数学奥林匹克数学竞赛第2题是:设实数x,y,z都不等于1,满足xyz=1,则x~2/(1-x)~2+y~2/(1-y)~2+z~2/(1-z)~2≥1.本文给出上述不等式的一个类比:命题1设实数x,y,z都不等于-1,且xyz=1,则x~2/(1+x)~2+y~2/(1+y)~2+z~2/(1+z)~2≥3/4.  相似文献   

17.
<正>文[1]编入两道关于不定方程的习题:(1)证明x3-y3-y3=xy+1993无正整数解;(2)求x3=xy+1993无正整数解;(2)求x3-y3-y3=xy+61的正整数解.本文将探讨两个一般形式的三元三次不定方程x3=xy+61的正整数解.本文将探讨两个一般形式的三元三次不定方程x3+y3+y3+z3+z3-3xyz=k(x3-3xyz=k(x2+y2+y2+z2+z2)+d(1)x2)+d(1)x3+y3+y3+z3+z3-3xyz=k x(y+xz+yz)+d(2)其中k、d∈Z,因对称性,约定方程⑴和方程⑵中x、y、z的值任意轮换时所得诸解为同一组解.  相似文献   

18.
第46届IMO(2005年)第三题是: 题1设x、y、z >0,且xyz≥1.证明: ∑x5-x2/x5+y2≥0, ① 其中,∑表示轮换对称和. 式①的等价形式为 ∑x2+y2+z2/x5+y2+z2≤3. 此不等式有很多证法,本文不再赘述. 易知,x2+y2+z2≥33√x2y2z2 ≥3. 自然的想法是将题1中的...  相似文献   

19.
平均值不等式是高中数学的重要内容 ,熟练掌握二元和三元均值不等式及其变形应用 ,可以巧妙地解决许多数学题 .1 证明不等式这是最为大家常见问题 ,问题解决的关键是怎样根据题目提供的隐含条件去构造二元或三元均值不等式 .例 1 已知 x,y,z∈ R+且满足 xyz(x +y + z) =1 ,求证 :(x + y) (y + z)≥ 2 .证明 :(x + y) (y + z) =xy + xz + y2 + yz =y(x + y + z) + xz =y . 1xyz+ xz =1xz+ xz≥ 2 1xz. xz =2 .证毕 .此题从“2”这个数字 ,提示我们构造二元均值不等式 .2 求最值高中数学很多地方涉及求最值 ,利用均值不等式中等号成立的条…  相似文献   

20.
多项式护 y“十z“一3xyz分解方法如下: x“ y3=(x Jr)3一3xy(x y) (x y)3 23=(x y z)〔(x y)2一(x y)z 22〕 故有x3 y3 23一3xyz=(x y)3一3xy(x y) 23一3xyz =(x y z)〔(x y)2一(x y)z 22〕一3xy(x y z) =(x y z)(xZ yZ 22一xy一yz一xz) 即:x3七y3 23一3xyz=(x 了 z)(xZ yZ 22一xy一yz一xz) 如在复数范围内还可继续分解为: x3 y3 23一3xyz=(x y z)(x 。y 。22)(x 。Zy 。z) .。是1的三次虚根(1)式是个很重要的公式,应用广泛,现仅举几例说明之。 1.因式分解 公式(1)中如果x y z=0,则(1)式变为 x3 y3 23二3xyz(3)式说明:任意三数之和如为0…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号