首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

2.
平均值法是数学中常用的解题方法,本文拟介绍平均值法在分解因式中的应用,这往往是许多教师容易忽略的。例1 分解因式(x~2-2x)(x~2-2x-2)-3。解:x~2-2x与x~2-2x-2的平均值为M=x~2-2x-1。∴原式=(M+1)(M-1)-3=M~2-4=(M+2)(M-2)=(x~2-2x+1)(x~2-2x-3)=(x-1)~2(x+1)(x-3)。例2 分解因式 4(x+5)(x+6)(x+10)(x+12)-3x~2。  相似文献   

3.
一、配方法例1分解因式:2x3-x2z-4x2y+2xyz+2xy2-y2z解:原式=(2x3-4x2y+2xy2)-(x2z-2xyz+y2z)=2x(x2-2xy+y2)-z(x2-2xy+y2)=(x2-2xy+y2)(2x-z)=(x-y)2(2x-z)·二、拆项法例2分解因式:x3-3x+2·解:原式=x3-3x-1+3=(x3-1)-(3x-3)=(x-1)(x2+x+1)-3(x-1)=(x-1)(x2+x-2)·注:本题是通过拆常数项分解的,还可通过拆一次项或拆三次项分解,读者不妨一试·三、添项法例3分解因式:x5+x+1·解:原式=(x5-x2)+x2+x+1=x2(x3-1)+(x2+x+1)=x2(x-1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1)·四、主元法例4分解因式:2a2-b2-ab+bc+2ac·解:以a为主元,将原式整理成关…  相似文献   

4.
一、配方法例 1 分解因式 :2 x3- x2 z- 4 x2 y 2 xyz 2 xy2- y2 z。解 :原式 =(2 x3- 4 x2 y 2 xy2 ) - (x2 z- 2 xyz y2 z) =2 x(x2 - 2 xy y2 ) - z(x2 - 2 xy y2 ) =(x2 -2 xy y2 ) (2 x- z) =(x- y) 2 (2 x- z)。二、拆项法例 2 分解因式 :x3- 3x 2。解 :原式 =x3- 3x- 1 3=(x3- 1 ) - (3x- 3)= (x- 1 ) (x2 x 1 ) - 3(x- 1 ) =(x- 1 ) 2 (x 2 )。注 :本题是通过拆常数项分解的 ,还可通过拆一次项或拆三次项分解 ,读者不妨一试。三、添项法例 3 分解因式 :x5 x 1。解 :原式 =(x5 - x2 ) x2 x 1 =x2 (x3- 1 ) (x2 x 1 ) =x2 (…  相似文献   

5.
因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2…  相似文献   

6.
<正> 题目分解因式:x3+2x2-5x-6. 分析这是一个三次四项式,显然要分组分解,并且要借助于拆项进行,由于拆项的方法不同,因而可得到多种不同的分解方法,这里分类介绍不同的解法中的一部分,以作抛砖引玉. 一、拆二次项解1 原式=(x3+x2)+(x2-5x-6)  相似文献   

7.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

8.
一、拆项变换例 1 分解因式 :x3- 9x 8。解 :原式 =( x3- 1) ( - 9x 9) =( x- 1) ( x2 x 1) - 9( x- 1) =( x- 1) ( x2 x- 8)。注 :本题是通过将 8拆成 - 1和 9后 ,再用分组分解法分解 ;也可将 - 9x拆成 - x和 - 8x,或将x3拆成 9x3和 - 8x3分解。二、添项变换例 2 分解因式 :x4 y4 ( x y) 4。解 :原式 =x4 2 x2 y2 y4 -2 x2 y2 ( x y) 4=( x2 y2 ) 2 -2 x2 y2 ( x y) 4=〔( x y) 2 -2 xy〕2 - 2 x2 y2 ( x y) 4=2〔( x y) 4- 2 xy( x y) 2 x2 y2 〕=2〔( x y) 2 - xy〕2 =2 ( x2 xy y2 ) 2 。注 :本题是关于 x、y的对称式 ,…  相似文献   

9.
全日制十年制学校,初中数学课本,代数第四册中第194页“初中代数总复习参考题”,第七题第(11)(12)小题: 7(11)分解多项式: (x+1)(x+2)(x+3)(x+4)-24; (12)分解多项式; (x~2+3x-3)(x~2+3x+4)-8。一般的解法是用十字交叉法分解,现在介绍用“求算术平均值法”分解,这种解法的过程是: 7(11) 分解多项式: (x+1)(x+2)(x+3)(x+4)-24。解原式=(x~2+5x+4)(x~2+5x+6)-24因多项式:x~2+5x+4和x~2+5x+6的算术平均值M=x~2+5x+5,  相似文献   

10.
正随着新课改的不断深入,很多教师越来越重视课本中的例题教学了.大家的共识是:对课本中的例题进行变式教学,有利于提高数学课堂的教学效益.现举一例,说明如下.例题计算:(x-3)(x+3)(x~2+9).(苏科版七年级(下).解原式=(x~2-9)(x~2+9)=x~4-81.变式1计算:(1)(xy-3)(xy+3)(x~2y~2+9);(2)(x-3y)(x+3y)(x~2+9y~2);解(1)原式=(x~2y~2-9)(x~2y~2+9)=x~4y~4-81;  相似文献   

11.
十字相乘法是因式分解的一种较方便的方法,这里加以介绍.我们考察多项式:x~2-8x+15 (1)用配方法因式分解:原式=x~2-8x+16-1=(x-4)~2-1=(x-4-1)(x-4+1)=(x-5)(x-3)至此,我们已经把(1)式分解成两个因式了.现在我们来研究这两个因式(x-5)、(x-3)与多项式x~2-8x+15有怎样的关系?从等式中可以看出,多项式二次项的系数1刚好等于两个因式中x的系数的积1×1=1,常数项15刚好是两个因式的常数项的积(-3)(-5)=15,一次项的系数(-8)刚好是因式的x的系数1、1和常数项-3、-5交叉相乘积的和1×(-5)+1×(-3)=-8.即  相似文献   

12.
例1、计算(x-1)/(x~2-3x+2)+(x+1)/(x-2)-(x~2-x-6)/(x~2-4) 解:原式=(x-1)/[(x-1)(x-2)]+(x+1)/(x-2)[(x-3)(x+2)]/[(x+2)(x-2)]=1/(x-2)+(x+1)/(x-2)-(x-3)/(x-2)=[1+(x+1)-(x-3)]/(x-2)=5/(x-2) 说明:本题看起来是异分母的分式相加减,但把两个较复杂的公式的分子、分母分解因式后,约去公因式,就变简单了,且是同分母的分式相加减。若不这样做,则会异常繁杂。  相似文献   

13.
已知x~2 x-1=0.求2x~3 4x~2 3的值。(1995,扬州市) 这道题的解法很多,现给出其中一种最简便的解法。 解 由多项式的除法, 原式=(x~2 x-1)(2x 2) 5  相似文献   

14.
因式分解是初中代数的重要内容之一,它的解法变化多样,为帮助同学们学好这部分内容,本文以课本中的有关题目为例,说明常见变换技巧,供参考和选用.一、指数变换例1分解因式xn+1-3xn+2xn-1解:以指数最低的xn-1为标准,把xn+1、xn分别变换为x2·xn-1、x·xn-1,则原式=xn-1(x2-3x+2)=xn-1(x-1)(x-2)二、符号变换例2分解因式(a-b)(x-y)-(b-a)(x+y)解:将-(b-a)变换为a-b,则原式=(a-b)(x-y+x+y)=2(a-b)x三、部分项分解变换例3分解因式x2-6x+9-y2解:原式=(x-3)2-y2=(x+y+3)(x-y-3)四、系数变换例4分解因式81+3x3解:将3提取后便于运用立方和公式分解原…  相似文献   

15.
因式分解的方法多种多样,现将其中最常用的九种变换方法例析如下.一、符号变换法例1把x2(x-4) 5x(4-x) 6(x-4)分解因式.分析:将5x(4-x)变形为-5x(x-4),即可提公因式(x-4)进行分解.解:原式=x2(x-4)-5x(x-4) 6(x-4)=(x-4)(x2-5x 6)=(x-4)(x-3)(x-2).二、指数变换法例2把xn 1 2xn xn-1分解因式.分析:以x的最低次幂xn-1为标准,将xn 1变形为xn-1·x2,xn变形为xn-1·x,即可提公因式xn-1进行分解.解:原式=xn-1·x2 2xn-1·x xn-1=xn-1(x2 2x 1)=xn-1(x 1)2.三、组合变换法例3把x2-6x-4y2 12y分解因式.分析:将题中各因式分组整理,第一项和第三项分为…  相似文献   

16.
拆项是数学学习中重要的一种解题方法 ,它指的是将代数式中的某项有意识地变形成两项或多项的和。灵活地应用这种方法 ,可很好地利用有关的公式、定理和已知条件 ,从而使解题简便易行。一、用于有理数计算例 1.计算 9999× 9999+19999。解 :原式 =(9999× 9999+9999) +10 0 0 0=9999× (9999+1) +10 0 0 0=10 0 0 0× (9999+1)=10 0 0 0 0 0 0 0。二、用于分解因式例 2 .分解因式 x3 +2 x2 - 5 x- 6。解 :原式 =(x3 +2 x2 +x) - (6 x+6 )=x(x+1) 2 - 6 (x+1)=(x+1) (x- 2 ) (x+3)。例 3.分解因式 x4 +x2 +2 ax+1- a2 。解 :原式 =(x4 +2 x2 …  相似文献   

17.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

18.
在分式运算中,常常要利用通分·若我们能细心观察、分析分式的结构特点,结合一定的通分技巧,往往可使运算简捷、准确·取得事半功倍的良好效果·一、整体处理后通分例1计算aa-31-a2-a-1·解:原式=aa-31-(a2+a+1)=a3-(a-a1)-(a12+a+1)=a3-a(a-31-1)=a-11·二、化积约分后通分例2计算x+2x3-3x-10-x2+x3-x2-10·解:原式=(x-5x)+(2x+2)-(x+5x)-(2x-2)=x1-5-x+15=10x2-25·三、分组结合后通分例3计算x-12+x2+1-x-21-x+12·解:原式=(x1-2-x1+2)+(x2+1-x-21)=4x2-4-x24-1=4(x2-1)-4(x2-4)(x2-4)(x2-1)=12x4-5x2+4·四、拆项相消后通分例4计算(x-11)…  相似文献   

19.
-.选择问:(3分×10=30分)1.下列因式分解正确的是( ) (A)x~2 6x 5=(x 3)(x=2) (B)4x~2-y~2=(4x y)(4x-y) (C)a~4-x~2-4ax-4a~2=(a~2 x 2a)(a~2-x-2a~2) (D)x~4-4x~2 3=(x~2-1)(x~2-3)2.使分式(x-1)/(|x| 1)有意义的x的取值是( ) (A)x≠±1 (B)x≠1 (C)x≠-1 (D)x取一切数3.下列多项式因式分解后不含(x-1)的为 ( ) (A) x~3-x~2-x 1 (B)x~2 y-xy-x  相似文献   

20.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号