首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recently, a growing awareness of the relationship between assessment and learning has resulted in several major critiques of existing practice and proposals for reform in science education at national and regional levels. One initiative advocates the use of carefully constructed performance tasks that give students opportunities to demonstrate their understanding as they would in the world outside of school. The purpose of this study was to explore relationships among school students' (n = 189) acquisition of meaningful understandings of protein synthesis. Students were tested before and after protein synthesis instruction using a multiple choice assessment format and an open‐ended assessment format. The assessment instrument was designed to measure students' interrelated understanding of protein synthesis. An independent t‐test analysis was conducted on the posttests to measure retention of factual information and gender differences. Analysis of student‐generated analogies also revealed unique patterns in students' understandings of this topic. This research provides information for educators on students' acquisition of meaningful understandings of protein synthesis and has many implications for educators. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 1–22, 1999.  相似文献   

2.
In a recent article, Nadelson and Southerland (2010. Development and preliminary evaluation of the Measure of Understanding of Macroevolution: Introducing the MUM. The Journal of Experimental Education, 78, 151–190) reported on their development of a multiple-choice concept inventory intended to assess college students' understanding of macroevolutionary concepts, the Measure of Understanding Macroevolution (MUM). Given that the only existing evolution inventories assess understanding of natural selection, a microevolutionary concept, a valid assessment of students' understanding of macroevolution would be a welcome and necessary addition to the field of science education. Although the conceptual framework underlying Nadelson and Southerland's test is promising, we believe the test has serious shortcomings with respect to validity evidence for the construct being tested. We argue and provide evidence that these problems are serious enough that the MUM should not be used in its current form to measure students' understanding of macroevolution.  相似文献   

3.
Many researchers consider a lacking interest in science and the students' belief that science is too demanding as major reasons why young people do not strive for science-related careers. In this article, we first delineated a theoretical framework to investigate the importance of interest, self-concept, and school factors regarding students' career preferences. Then, we tested the expected effects on a sample of German 9th-grade students (N = 7,813). We focused on two school factors: the amount of (additional) science activities and the real-life applications in science classes. The multi-level analysis showed that school factors were highly relevant for the students' interest in science and science self-concept. In turn, interest in science and science self-concept affect the students' interest in science-related careers. We conclude that focusing on the link between individual and school characteristics is important for the understanding of students' interest in science-related careers.  相似文献   

4.
The purpose of this article is to provide an overview of the nature of models and their uses in the science classroom based on a theoretical review of literature. The ideas that science philosophers and science education researchers have in common about models and modelling are scrutinised according to five subtopics: meanings of a model, purposes of modelling, multiplicity of scientific models, change in scientific models and uses of models in the science classroom. First, a model can be defined as a representation of a target and serves as a ‘bridge’ connecting a theory and a phenomenon. Second, a model plays the roles of describing, explaining and predicting natural phenomena and communicating scientific ideas to others. Third, multiple models can be developed in science because scientists may have different ideas about what a target looks like and how it works and because there are a variety of semiotic resources available for constructing models. Fourth, scientific models are tested both empirically and conceptually and change along with the process of developing scientific knowledge. Fifth, in the science classroom, not only teachers but also students can take advantage of models as they are engaged in diverse modelling activities. The overview presented in this article can be used to educate science teachers and encourage them to utilise scientific models appropriately in their classrooms.  相似文献   

5.
This study examined the relationship between students' (N = 229) concepts of size and scale and students' achievement in science and mathematics over a 3-year period. Size and scale are considered one of the big ideas in science that permeates disparate science and mathematics content areas, yet little is known about the relationship between students' conceptualization of size and scale and students' achievement in science and mathematics. The study used a modified panel longitudinal design to follow the same class of students over a 3-year period. The goal was to explore whether understandings of size and scale are related to achievement in mathematics and science. Results indicated a strong positive significant relationship existed between students' understanding of size and scale and students' science achievement in grades 5 and 8. There was a positive significant relationship between students' concepts of size and scale and students' mathematics achievement in grades 5, 6, 7, and 8. An examination of the relationships is included as well as a discussion of the integration of crosscutting concepts into science and mathematics instruction as a way to support deep learning.  相似文献   

6.
The purpose of this study was to explore relationships among school students' (N = 189) meaningful learning orientation, reasoning ability and acquisition of meaningful understandings of genetics topics, and ability to solve genetics problems. This research first obtained measures of students' meaningful learning orientation (meaningful and rote) and reasoning ability (preformal and formal). Students were tested before and after laboratory-based learning cycle genetics instruction using a multiple choice assessment format and an open-ended assessment format (mental model). The assessment instruments were designed to measure students' interrelated understandings of genetics and their ability to solve and interpret problems using Punnett square diagrams. Regression analyses were conducted to examine the predictive influence of meaningful learning orientation, reasoning ability, and the interaction of these variables on students' performance on the different tests. Meaningful learning orientation best predicted students' understanding of genetics interrelationships, whereas reasoning ability best predicted their achievement in solving genetics problems. The interaction of meaningful learning orientation and reasoning ability did not significantly predict students' genetics understanding or problem solving. Meaningful learning orientation best predicted students' performance on all except one of the open-ended test questions. Examination of students' mental model explanations of meiosis, Punnett square diagrams, and relationships between meiosis and the use of Punnett square diagrams revealed unique patterns in students' understandings of these topics. This research provides information for educators on students' acquisition of meaningful understandings of genetics. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
This study develops a framework to conceptualize the use and evolution of machine learning (ML) in science assessment. We systematically reviewed 47 studies that applied ML in science assessment and classified them into five categories: (a) constructed response, (b) essay, (c) simulation, (d) educational game, and (e) inter-discipline. We compared the ML-based and conventional science assessments and extracted 12 critical characteristics to map three variables in a three-dimensional framework: construct, functionality, and automaticity. The 12 characteristics used to construct a profile for ML-based science assessments for each article were further analyzed by a two-step cluster analysis. The clusters identified for each variable were summarized into four levels to illustrate the evolution of each. We further conducted cluster analysis to identify four classes of assessment across the three variables. Based on the analysis, we conclude that ML has transformed—but not yet redefined—conventional science assessment practice in terms of fundamental purpose, the nature of the science assessment, and the relevant assessment challenges. Along with the three-dimensional framework, we propose five anticipated trends for incorporating ML in science assessment practice for future studies: addressing developmental cognition, changing the process of educational decision making, personalized science learning, borrowing 'good' to advance 'good', and integrating knowledge from other disciplines into science assessment.  相似文献   

8.
Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high, medium and low socio-economic status in Hunan Province, central south China (n?=?135) and three schools of similar socio-economic status in Western Australia (n?=?120). The students' understanding was assessed by a science quiz, developed from past Trends in Mathematics and Science Study science released items for primary children. In-depth interviews were carried out to further explore children's conceptual understanding of living things, the Earth and floating and sinking. The results revealed that Year 3 children from schools of similar socio-economic status in the two countries had similar conceptual understandings of life science, earth science and physical science. Further, in both countries, the higher the socio-economic status of the school, the better the students performed on the science quiz and in interviews. Some idiosyncratic strengths and weaknesses were observed, for example, Chinese Year 3 children showed relative strength in classification of living things, and Australian Year 3 children demonstrated better understanding of floating and sinking, but children in both countries were weak in applying and reasoning with complex concepts in the domain of earth science. The results raise questions about the value of providing a science curriculum in early childhood if it does not make any difference to students' conceptual understanding of science.  相似文献   

9.
This paper presents the third study of research trends in science education. In this review, a total of 990 papers published in the International Journal of Science Education, the Journal of Research in Science Teaching, and Science Education from 2008 to 2012 were analyzed. The results indicate that in the recent five years (2008–2012), the top three research topics in the published papers were those regarding the context of students' learning, science teaching, and students' conceptual learning. The changes in the most popular research topics in the past 15 years also evidentially indicate shifts in the journals' preferences and researchers' interest. For example, in 2003–2007, context of students' learning replaced students' conceptual learning, which was the most published research topic from 1998 to 2002. The research topic of students' learning contexts continued to rank the first in 2008–2012. Moreover, there was an increasing trend of research papers regarding science teaching from 1998 to 2012. The analysis of highly cited papers revealed that research topics such as argumentation, inquiry-based learning, and scientific modeling were recently highlighted by science educators. In recent 15 years, productive researchers' publications also focused on the topics about context of students' learning, science teaching, and students' conceptual learning.  相似文献   

10.
It is argued that knowledge about models is an important part of a profound understanding of Nature of Science. Consequently, researchers have developed different ‘levels of understanding’ to analyse students’, teachers’, or experts’ comprehension of this topic. In some approaches, global levels of understanding have been developed which mirror the idea of an understanding of models and modelling as a whole. Opposed to this, some authors have developed levels of understanding for distinct aspects concerning models and modelling in science (i.e. aspect-dependent levels). This points to an important issue for science education research since global conceptualisations might lead to less differentiated assessments and interventions than aspect-dependent ones. To contribute to this issue, the article summarises conceptualisations of both global and aspect-dependent levels of understanding models and modelling that have been developed in science education. Further, students’ understanding of the aspects nature of models, multiple models, purpose of models, testing models, and changing models has been assessed (N?=?1,180; 11 to 19 years old; secondary schools; Berlin, Germany). It is discussed to what extent the data support the notion of global or aspect-dependent levels of understanding models and modelling in science. The results suggest that students seem to have a complex and at least partly inconsistent pattern of understanding models. Furthermore, students with high nonverbal intelligence and good marks seem to have a comparatively more consistent and more elaborated understanding of models and modelling than weaker students. Recommendations for assessment in science education research and teaching practice are made.  相似文献   

11.
Students' difficulties in interpreting what counts as knowledge have been addressed in past research on science education. The implementation of progressivist pedagogy in terms of more student-active classroom practice and the introduction of a variety of discourses into the science classroom deepens students' difficulties. The integration of different forms and demands of knowledge and discourses typified by Science-in-Context initiatives, such as within the socioscientific framework, exemplifies this development in science education. Here, the diffuse boundaries between school subjects and other silos of knowledge lead to considerable difficulties for students to interpret what is expected from them. Such contexts having diffuse boundaries between, for example, subject discourses and other forms of knowledge, have been describes as contexts with weak classification. The present study aims to explore students' interpretation of what knowledge or meaning they are requested to produce in contexts with weak classification, here exemplified within an SSI-task. We use Bernstein's concepts of recognition rules and classification to analyze how 15- to 16-year-old students develop their discussions in groups of 4–6 students. This study reports how students' recognition of the educational demands enabled integration of different discourses in their discussion, and that the use of both universalistic and particularistic meanings can produce new understandings. Students who had not acquired recognition rules were found to keep discourses apart, expressed either as rejection of the relevance of the task, answering questions as in a traditional school task, or just exchange of personal opinions. Furthermore, they included discourses irrelevant to the issue. An important outcome of the study was that socioscientific thinking was hampered when students kept universalistic and particularistic meanings apart. This hampering results from the inhibition of dynamic exploration during SSI discussions. The results provide new insights with relevance for teachers' guiding students toward a fruitful SSI-discourse.  相似文献   

12.
13.
ABSTRACT

The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.  相似文献   

14.
The understanding of concepts in social science was investigated by interviewing students studying two foundation courses in Social Science at the Open University. The investigation was carried out using the research paradigm of phenomenography (Marton, 1981) where the content of learning is seen as a quality rather than as a quantity. There were two aims of the research.
  1. To discover the different understandings that students hold of particular important concepts in Social Science.
  2. To use the method as a method of formative evaluation to influence the production of new course materials.
This paper concentrates on describing the results in terms of two evaluation strategies: Formative evaluation, where the students' understandings of the concept before the course were used to influence the teaching strategy of the remade course. Summative evaluation, where the students' answers before and after the course were compared to evaluate their learning on the course.  相似文献   

15.

Responses to a written beliefs test for 178 eighth grade students and interviews with a subset of the students are analysed to investigate students' beliefs about the tentativeness of scientific knowledge and about the autonomy and strategies appropriate for science learning. These three dimensions of beliefs are salient because they align with the image of science teaching promoted by current reform movements. Analyses focus on change in beliefs and relationships among dimensions of beliefs and between those beliefs and students' understandings of science concepts. Results show that students' beliefs do not change much during the one-semester course. Students who view scientific knowledge as tentative also try to understand science. Autonomous students do not hold the most productive learning strategies, though students with low autonomy develop significantly less coherent understandings of science concepts. Instructional implications focus on potential roles of teachers and technology in promoting productive beliefs about scientific knowledge and science learning. Implications for individualized instruction follow classroom-level implications.  相似文献   

16.
Past studies have explored the role of student science notebooks in supporting students' developing science understandings. Yet scant research has investigated science notebook use with students who are learning science in a language they are working to master. To explore how student science notebook use is co-constructed in interaction among students and teachers, this study examined plurilingual students' interactions with open-ended science notebooks during an inquiry science unit on condensation and evaporation. Grounded in theoretical views of the notebook as a semiotic social space, multimodal interaction analysis facilitated examination of the ways students drew upon the space afforded by the notebook as they constructed explanations of their understandings. Cross-group comparison of three focal groups led to multiple assertions regarding the use of science notebooks with plurilingual students. First, the notebook supported student-determined paths of resemiotization as students employed multiple communicative resources to express science understandings. Second, notebooks provided spaces for students to draw upon diverse language resources and as a bridge in time across multiple inquiry sessions. Third, representations in notebooks were leveraged by both students and teachers to access and deepen conceptual conversations. Lastly, students' interactions over time revealed multiple epistemological orientations in students' use of the notebook space. These findings point to the benefits of open-ended science notebooks use with plurilingual students, and a consideration of the ways they are used in interaction in science instruction.  相似文献   

17.
This paper reports the results of a survey of 3006 Year 10–12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a process in which individual metal atoms lose their outermost shell electrons to form a ‘sea of electrons’ and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an interaction. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, process and interaction understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.  相似文献   

18.
Previous research has demonstrated the potential of examining log-file data from computer-based assessments to understand student interactions with complex inquiry tasks. Rather than solely providing information about what has been achieved or the accuracy of student responses (product data), students' log files offer additional insights into how the responses were produced (process data). In this study, we examined students' log files to detect patterns of students' interactions with computer-based assessment and to determine whether unique characteristics of these interactions emerge as distinct profiles of inquiry performance. Knowledge about the characteristics of these profiles can shed light on why some students are more successful at solving simulated inquiry tasks than others and how to support student understanding of scientific inquiry through computer-based environments. We analyzed the Norwegian PISA 2015 log-file data, science performance as well as background questionnaire (N = 1,222 students) by focusing on two inquiry tasks, which required scientific reasoning skills: coordinating the effects of multiple variables and coordinating theory and evidence. Using a mixture modeling approach, we identified three distinct profiles of students' inquiry performance: strategic, emergent, and disengaged. These profiles revealed different characteristics of students' exploration behavior, inquiry strategy, time-on-task, and item accuracy. Further analyses showed that students' assignment to these profiles varied according to their demographic characteristics (gender, socio-economic status, and language at home), attitudes (enjoyment in science, self-efficacy, and test anxiety), and science achievement. Although students' profiles on the two inquiry tasks were significantly related, we also found some variations in the proportion of students' transitions between profiles. Our study contributes to understanding how students interact with complex simulated inquiry tasks and showcases how log-file data from PISA 2015 can aid this understanding.  相似文献   

19.
Students' personal theories about education change as students gather new evidence about intelligence, learning, and knowledge. The present study investigated whether college instructors' play a role in changing students' personal theories with the messages professors send in the classroom. Students (N = 162) and instructors (N = 15) of undergraduate-level math and science summer courses completed surveys assessing personal theories about education and the frequency of messages related to educational beliefs. Multilevel models found that both between-class and within-class differences in reported messages corresponded with students' personal beliefs at the end of the course. Instructors' personal theories were generally not predictive of students' personal theories, and students' initial personal theories predicted the messages they remembered hearing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号