首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article discusses the results of a mainly qualitative study into possible impacts of recent controversial socio‐scientific issues on a group of Portuguese secondary school students regarding their conceptions about scientists. The 86 participants: (1) answered a questionnaire with open‐ended questions; and (2) wrote a science fiction story involving a group of scientists working on a particular situation of her/his choice. Next, semi‐structured interviews were carried out to clarify and discuss the ideas embodied in the stories and mentioned in the questionnaire. All data underwent a process of content analysis. The socio‐scientific controversies recently discussed, and the way science and scientists are depicted in the media, seem to have produced some impact on students' conceptions about scientists. Based on the results obtained, some remarks and educational implications are discussed.  相似文献   

2.
This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual‐change framework, used an interpretive approach and a case‐based design with multiple data collection methods. Over 4–8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross‐case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible–plausible–fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 205–235, 2007  相似文献   

3.
4.
This study investigated the conceptual pathways of 19 Grade 11 introductory chemistry students (age 16–17) as they participated in a multirepresentational instruction on the particulate nature of matter (PNM). This study was grounded in contemporary conceptual change theory, in particular, research on students' conceptual pathways that focuses on the interaction between students' existing conceptions and instruction, which might give rise to observing multiple paths. This mixed method study combined a quantitative research design with qualitative data collection and analysis methods. Data were collected through open‐ended questionnaires, interviews, and document analysis to portray the patterns of students' conceptual pathways of the PNM from pre to postinstruction to 3 months after the instruction. An interpretive analysis of the qualitative data revealed six different conceptual pathways varying between radical progress and no additional progress (stable) after the multirepresentational instruction and between stable (no change) and full decay over a 3‐month period following the instruction. The identified patterns of conceptual pathways provide information about the manner in which conceptual change occurred, as well as suggest potential implications for instructional practices. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1004–1035, 2010  相似文献   

5.
6.
This study examined 10th‐grade students' use of theory and evidence in evaluating a socio‐scientific issue: the use of underground water, after students had received a Science, Technology and Society‐oriented instruction. Forty‐five male and 45 female students from two intact, single‐sex, classes participated in this study. A flow‐map method was used to assess the participants' conceptual knowledge. The reasoning mode was assessed using a questionnaire with open‐ended questions. Results showed that, although some weak to moderate associations were found between conceptual organization in memory and reasoning modes, the students' ability to incorporate theory and evidence was in general inadequate. It was also found that students' reasoning modes were consistent with their epistemological perspectives. Moreover, male and female students appear to have different reasoning approaches.  相似文献   

7.
The process of students' conceptual change was investigated during a computer‐supported physics unit in a Grade 10 science class. Computer simulation programs were developed to confront students' alternative conceptions in mechanics. A conceptual test was administered as a pre‐, post‐, and delayed posttest to determine students' conceptual change. Students worked collaboratively in pairs on the programs carrying out predict–observe–explain tasks according to worksheets. While the pairs worked on the tasks, their conversational interactions were recorded. A range of other data was collected at various junctures during instruction. At each juncture, the data for each of 12 students were analyzed to provide a conceptual snapshot at that juncture. All the conceptual snapshots together provided a delineation of the students' conceptual development. It was found that many students vacillated between alternative and scientific conceptions from one context to another during instruction, i.e., their conceptual change was context dependent and unstable. The few students who achieved context independent and stable conceptual change appeared to be able to perceive the commonalities and accept the generality of scientific conceptions across contexts. These findings led to a pattern of conceptual change which has implications for instructional practices. The article concludes with consequent implications for classsrooms. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 859–882, 1999  相似文献   

8.
A qualitative case study of 17 high‐school students identified as at risk for dropping out, this research develops a grounded theory describing the process of students' persistence and the support they received from teachers and school administrators. Three interactive factors appear critical to persistence: (a) goal orientation—students' belief they will benefit from graduating, (b) willingness to play the game—students' willingness to follow school rules, and (c) meaningful connections—relationships with teachers who believed students could graduate and provided support and caring. All three factors were present for students who stayed through the school year whereas one or more was absent from the experiences of the students who left school before graduation. The research provides further support for the role of schools in supporting students' persistence and has implications for how schools support students who are struggling to stay in school. © 2006 Wiley Periodicals, Inc. Psychol Schs 43: 599–611, 2006.  相似文献   

9.
Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the—mostly unconscious—deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.  相似文献   

10.
This study evaluates the use of an open‐ended question to determine students' knowledge structure on the topic of galvanic cells. The open‐ended question was developed and administered to 163 Grade 10 students who had earlier completed a course on electrochemistry. Students' responses were marked as well as coded on the basis of the fields identified from their responses. This was then evaluated statistically to determine the collective knowledge structure of the sample of students. The knowledge structure thus mapped contains both canonical concepts and alternative conceptions (ACs). An important finding emerging from this study is that instructors need to focus student's attention on the dynamic processes involving electrons and ions during the operation of galvanic cells. In order for students to fully understand how a galvanic cell operates, they need to see the whole picture. There are three critical components that lead to students' understanding of how an oxidation–reduction reaction can generate energy and how a circuit is complete: transfer of electrons during oxidation–reduction half‐reactions, flow of electrons within metals, and migration of ions in solution. Also, we found that it is possible for students to use correct chemistry concepts in an incorrect way by establishing linkages among these in an inappropriate manner. We reiterate that apart from evaluating students' ACs, it is also important to evaluate the links between the concepts and conceptions present in students' knowledge structure so that teaching can be made more effective.  相似文献   

11.
Many studies have shown that students of all school levels hold alternative conceptions that differ from the scientific conceptions transmitted by the school. These results raise some questions about the efficacy of traditional teaching and stress the need for using teaching strategies that explicitly take into account the alternative conceptions that students bring to the science classes. This issue has recently been raised and widely discussed throughout Portugal and the proposals for the new science syllabuses advise teachers to take it into account. However, the number of studies investigating both the teachers' attitudes towards this issue and the use of teaching strategies based on students' alternative conceptions is very limited. This article aims to present the results obtained from science teachers about their attitudes towards students' alternative conceptions and the use of teaching strategies based on these conceptions. The results may contribute to the planning of in-service courses.  相似文献   

12.
13.
Recently, a growing awareness of the relationship between assessment and learning has resulted in several major critiques of existing practice and proposals for reform in science education at national and regional levels. One initiative advocates the use of carefully constructed performance tasks that give students opportunities to demonstrate their understanding as they would in the world outside of school. The purpose of this study was to explore relationships among school students' (n = 189) acquisition of meaningful understandings of protein synthesis. Students were tested before and after protein synthesis instruction using a multiple choice assessment format and an open‐ended assessment format. The assessment instrument was designed to measure students' interrelated understanding of protein synthesis. An independent t‐test analysis was conducted on the posttests to measure retention of factual information and gender differences. Analysis of student‐generated analogies also revealed unique patterns in students' understandings of this topic. This research provides information for educators on students' acquisition of meaningful understandings of protein synthesis and has many implications for educators. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 1–22, 1999.  相似文献   

14.
One of the factors affecting students' learning in science is their existing knowledge prior to instruction. The students' prior knowledge provides an indication of the alternative conceptions as well as the scientific conceptions possessed by the students. This study is concerned primarily with students' alternative conceptions and with instructional strategies to effect the learning of scientific conceptions; i.e., to effect conceptual change from alternative to scientific conceptions. The conceptual change model used here suggests conditions under which alternative conceptions can be replaced by or differentiated into scientific conceptions and new conceptions can be integrated with existing conceptions. The instructional strategy and materials were developed for a particular student population, namely, black high school students in South Africa, using their previously identified prior knowledge (conceptions and alternative conceptions) and incorporate the principles for conceptual change. The conceptions involved were mass, volume, and density. An experimental group of students was taught these concepts using the special instructional strategy and materials. A control group was taught the same concepts using a traditional strategy and materials. Pre- and posttests were used to assess the conceptual change that occurred in the experimental and control groups. The results showed a significantly larger improvement in the acquisition of scientific conceptions as a result of the instructional strategy and materials which explicitly dealt with student alternative conceptions.  相似文献   

15.
This article reports on a survey of 332 Year 3 students from 14 Australian schools. We are interested in exploring Year 3 primary school student aspirations and what this data shows us about any societal changes, or not. This study is timely as it reports on contemporary data within an Australian educational context marked by significant investment in improving equitable gendered participation, particularly for girls entering STEM. Drawing on conceptions of masculinities and femininities as social constructions, we report on the participants’ desired occupations and explore their justifications for such choices. The top three occupations for boys included careers in professional sports, STEM-related jobs and policing/defence. Girls reported wanting to be teachers, veterinarians or to work in the arts as their top choices. As part of our exploration, we found issues of money and power—traditionally coded masculine—and conceptions of love and care—traditionally coded feminine—ingrained in boys’ and girls’ justifications for their desired trajectories. Findings are significant for illustrating how traditional constructions of gender are ingrained in career choices in the early years of primary school and how policy agendas to widen participation need to start early in life.  相似文献   

16.
This research investigated the effect of reflective discussions following inquiry‐based laboratory activities on students' views of the tentative, empirical, subjective, and social aspects of nature of science (NOS). Thirty‐eight grade six students from a Lebanese school participated in the study. The study used a pretest–posttest control‐group design and focused on collecting mainly qualitative data. During each laboratory session, students worked in groups of two. Later, experimental group students answered open‐ended questions about NOS then engaged in reflective discussions about NOS. Control group students answered open‐ended questions about the content of the laboratory activities then participated in discussions of results of these activities. Data sources included an open‐ended questionnaire used as pre‐ and posttest, answers to the open‐ended questions that experimental group students answered individually during every session, transcribed videotapes of the reflective discussions of the experimental group, and semi‐structured interviews. Results indicated that explicit and reflective discussions following inquiry‐based laboratory activities enhanced students' views of the target NOS aspects more than implicit inquiry‐based instruction. Moreover, implicit inquiry‐based instruction did not substantially enhance the students' target NOS views. This study also identified five major challenges that students faced in their attempts to change their NOS views. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1229–1252, 2010  相似文献   

17.
18.
This study was based on the framework of the “conflict map” to facilitate student conceptual learning about causes of the seasons. Instruction guided by the conflict map emphasizes not only the use of discrepant events, but also the resolution of conflict between students' alternative conceptions and scientific conceptions, using critical events or explanations and relevant perceptions and conceptions that explicate the scientific conceptions. Two ninth grade science classes in Taiwan participated in this quasi‐experimental study in which one class was assigned to a traditional teaching group and the other class was assigned to a conflict map instruction treatment. Students' ideas were gathered through three interviews: the first was conducted 1 week after the instruction; the second 2 months afterward; and the third at 8 months after the treatment. Through an analysis of students' interview responses, it was revealed that many students, even after instruction, had a common alternative conception that seasons were determined by the earth's distance to the sun. However, the instruction guided by the framework of the conflict map was shown to be a potential way of changing the alternative conception and acquiring scientific understandings, especially in light of long‐term observations. A detailed analysis of students' ideas across the interviews also strongly suggests that researchers as well as practicing teachers need to pay particular attention to those students who can simply recall the scientific fact without deep thinking, as these students may learn science through rote memorization and soon regress to alternative conceptions after science instruction. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 42: 1089–1111, 2005  相似文献   

19.
Conceptual surveys have become increasingly popular at many levels to probe various aspects of science education research such as measuring student understanding of basic concepts and assessing the effectiveness of pedagogical material. The aim of this study was to construct a valid and reliable multiple‐choice conceptual survey to investigate students’ understanding of introductory quantum physics concepts. We examined course syllabi to establish content coverage, consulted with experts to extract fundamental content areas, and trialled open‐ended questions to determine how the selected content areas align with students’ difficulties. The questions were generated and trialled with different groups of students. Each version of the survey was critiqued by a group of discipline and teaching experts to establish its validity. The survey was administered to 312 students at the University of Sydney. Using the data from this sample, we performed five statistical tests (item difficulty index, item discrimination index, item point biserial coefficient, KR‐21 reliability test, and Ferguson’s delta) to evaluate the test’s reliability and discriminatory power. The result indicates that our survey is a reliable test. This study also provided data from which preliminary findings were drawn on students’ understandings of introductory quantum physics concepts. The main point is that questions which require an understanding of the standard interpretations of quantum physics are more challenging for students than those grouped as non‐interpretative. The division of conceptual questions into interpretive and non‐interpretive needs further exploration.  相似文献   

20.
Abstract

This article examines the social nature of teachers' conceptions by showing how teachers frame the “mismatch” of students' perceived abilities and the intended school curriculum through conversational category systems. This study compares the conversations of 2 groups of high school mathematics teachers addressing the Mismatch Problem when implementing equity-geared reforms. Although East High teachers challenged conceptions that were not aligned with a reform, South High teachers reworked a reform mandate to align with their existing conceptions. This research found that the teachers' conversational category systems modeled problems of practice; communicated assumptions about students, subject, and teaching; and were ultimately reflected in the curriculum. Because East High teachers supported greater numbers of students' success in advanced mathematics, this study considers the relation between teachers' understandings of student learning and the success of equity-geared math reforms. In addition, this study contributes to the understanding of how teacher conceptions of students are negotiated and reified in context, specifically through interactions with colleagues and experiences with school reform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号