首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families’ children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families’ children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.  相似文献   

2.
This study investigated the effects of a collaborative science intervention on high achieving students’ learning anxiety and attitudes toward science. Thirty‐seven eighth‐grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20‐week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty‐eight eighth‐grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants’ learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow‐up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.  相似文献   

3.
This study investigated the effects of students’ prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students in each class were divided into three groups according to their level of prior science knowledge; they then took either our social- or individual-based online science learning program. The results show that students in the social online argumentation group performed better in argumentation and online argumentation learning. Qualitative analysis indicated that the students’ social interactions benefited the co-construction of sound arguments and the accurate understanding of science concepts. In constructing arguments, students in the individual online argumentation group were limited to knowledge recall and self-reflection. High prior-knowledge students significantly outperformed low prior-knowledge students in all three aspects of science learning. However, the difference in inquiry and argumentation performance between low and high prior-knowledge students decreased with the progression of online learning topics.  相似文献   

4.
The literature provides confounding information with regard to questions about whether students in high school can engage in meaningful argumentation about socio‐scientific issues and whether this process improves their conceptual understanding of science. The purpose of this research was to explore the impact of classroom‐based argumentation on high school students' argumentation skills, informal reasoning, and conceptual understanding of genetics. The research was conducted as a case study in one school with an embedded quasi‐experimental design with two Grade 10 classes (n = 46) forming the argumentation group and two Grade 10 classes (n = 46) forming the comparison group. The teacher of the argumentation group participated in professional learning and explicitly taught argumentation skills to the students in his classes during one, 50‐minute lesson and involved them in whole‐class argumentation about socio‐scientific issues in a further two lessons. Data were generated through a detailed, written pre‐ and post‐instruction student survey. The findings showed that the argumentation group, but not the comparison group, improved significantly in the complexity and quality of their arguments and gave more explanations showing rational informal reasoning. Both groups improved significantly in their genetics understanding, but the improvement of the argumentation group was significantly better than the comparison group. The importance of the findings are that after only a short intervention of three lessons, improvements in the structure and complexity of students' arguments, the degree of rational informal reasoning, and students' conceptual understanding of science can occur. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 952–977, 2010  相似文献   

5.
6.
The purpose of this study was to explore the impact of an intervention on pre-service science teachers’ self-efficacy to teach science through argumentation and explore the challenges they experienced while implementing argumentation. Forty pre-service science teachers in their final semester of schooling participated in an intervention that lasted for 11 weeks. Intervention focused on participants’ understanding of argumentation as a scientific practice and as a pedagogical tool. The participants engaged in argument construction, evaluation, and critique, taught three argumentation lessons, engaged in peer observation of teaching, and reflection on their teaching skills. Data were collected through Argumentation Self-Efficacy Scale and an open-ended questionnaire. The results show that the intervention had a significantly positive effect on pre-service teachers’ self-efficacy. Despite this reported self-efficacy, participants experienced significant challenges in guiding their students to construct scientific arguments and assessing the arguments developed by their students. Discussion focuses on implications for professional development of pre-service and in-service science teachers.  相似文献   

7.
The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.  相似文献   

8.
The purposes of this study were to validate an instrument of attitudes toward science and to investigate grade level, type of school, and gender differences in Taiwan’s students’ personality traits and attitudes toward science as well as predictors of attitudes toward science. Nine hundred and twenty‐two elementary students and 1,954 secondary students completed the School Student Questionnaire in 2008. Factor analyses, correlation analyses, ANOVAs, and regressions were used to compare the similarities and differences among male and female students in different grade levels. The findings were as follows: female students had higher interest in science and made more contributions in teams than their male counterparts across all grade levels. As students advanced through school, student scores on the personality trait scales of Conscientiousness and Openness sharply declined; students’ scores on Neuroticism dramatically increased. Elementary school and academic high school students had significantly higher total scores on interest in science than those of vocational high and junior high school students. Scores on the scales measuring the traits of Agreeableness, Extraversion, and Conscientiousness were the most significant predictors of students’ attitudes toward science. Implications of these findings for classroom instruction are discussed.  相似文献   

9.
Many have argued that the inclusion of the history of science in science teaching might promote an understanding of the nature of science as well as the attitudes toward science. However, its inclusion in science teaching may not have the desired effect due to the limited coverage it receives in textbooks and the limited time available for teaching. A historical episodes map (HEM) is thus developed with four storylines and more than 20 events related to the history of science and is designed to fit in with regular teaching topics. A total of 329 students in Grade 7 were involved in the experimental group and the control group. The control group was taught using the textbook only, while the experimental group was also taught using the textbook plus HEM materials and associated discussion. The intervention of such teaching lasted for a month and a half. The findings reveal that the exposure of students to HEM materials did promote the students’ understanding of the nature of science as well as their attitudes toward science.  相似文献   

10.
The purpose of this study is to explore how Lakatos’ scientific research programmes might serve as a theoretical framework for representing and evaluating informal argumentation about socio‐scientific issues. Seventy undergraduate science and non‐science majors were asked to make written arguments about four socio‐scientific issues. Our analysis showed that the science majors’ informal arguments were significantly better than the non‐science majors’ arguments. In terms of the resources for supporting reasons, we find that personal experience and scientific belief are the two categories that are generated most often in both groups of the participants. Besides, science majors made significantly greater use of analogies, while non‐science majors made significantly greater use of authority. In addition, both science majors and non‐science majors had a harder time changing their arguments after participating in a group discussion. In the study of argumentation in science, scholars have often used Toulmin’s framework of data, warrant, backing, qualifiers, claims, and rebuttal. Our work demonstrates that Lakatos’ work is also a viable perspective, especially when warrant and backing are difficult to discern, and when students’ arguments are resistant to change. Our use of Lakatos’ framework highlights how the ‘hard core’ of students’ arguments about socio‐scientific issues does, indeed, seem to be protected by a ‘protective belt’ and, thus, is difficult to alter. From these insights, we make specific implications for further research and teaching.  相似文献   

11.
The purpose of this study was to investigate the quality, evolution, and position of university students’ argumentation about organic agriculture over a 4-week argument–critique–argument e-learning experience embedded in a first year university biology course. The participants (N??=??43) were classified into three groups based on their epistemological views. Data collected from individual arguments, group deliberations, and individual critiques were coded and analyzed to establish the quality and evolution of argumentation. Results indicated significant improvement in the quality of their justifications between the first and second arguments. Post-hoc comparison of epistemological groups indicated that the more constructivist-oriented students had a greater significant evolution of their justifications than the more empiricist-oriented students, but there was no significant main effect for epistemological orientation. Qualitative analysis of the intervening critiques indicated that some students incorporated or used other students’ arguments or counter-arguments to change their position or to enhance the justification of their original position on organic agriculture, while others appeared to be locked into a confirmation-bias stance and search for evidence that supported their original position and disregarded contradictory evidence.  相似文献   

12.
13.
This study explored the effects of a modified argument-driven inquiry approach on Grade 4 students’ engagement in learning science and argumentation in Taiwan. The students were recruited as an experimental group (EG, n?=?36) to join a 12-week study, while another 36 Grade 4 students from the same schools were randomly selected to be the comparison group (CG). All participants completed a questionnaire at the beginning and end of this study. In addition, four target students with the highest and the other four students with the lowest pretest engagement in learning science or argumentation to be observed weekly and interviewed following the posttest. Initial results revealed that the EG students’ total engagement in learning science and argumentation and the claim and warrant components were significantly higher than the CG students. In addition, the EG students’ anxiety in learning science significantly decreased during the study; and their posttest total engagement in learning science scores were positively associated with their argumentation scores. Interview and observation results were consistent with the quantitative findings. Instructional implications and research recommendations are discussed.  相似文献   

14.
15.
This study explores how student-generated questions can support argumentation in science. Students were asked to discuss which of two graphs showing the change in temperature with time when ice is heated to steam was correct. Four classes of students, aged 12–14 years, from two countries, first wrote questions about the phenomenon. Then, working in groups with members who differed in their views, they discussed possible answers. To help them structure their arguments, students were given a sheet with prompts to guide their thinking and another sheet on which to represent their argument diagrammatically. One group of students from each class was audiotaped. Data from both students' written work and the taped oral discourse were then analyzed for types of questions asked, the content and function of their talk, and the quality of arguments elicited. To illustrate the dynamic interaction between students' questions and the evolution of their arguments, the discourse of one group is presented as a case study and comparative analyses made with the discourse from the other three groups. Emerging from our analysis is a tentative explanatory model of how different forms of interaction and, in particular, questioning are needed for productive argumentation to occur.  相似文献   

16.
The purpose of this study was to investigate and compare the impact of Internet Virtual Physics Laboratory (IVPL) instruction with traditional laboratory instruction in physics academic achievement, performance of science process skills, and computer attitudes of tenth grade students. One-hundred and fifty students from four classes at one private senior high school in Taoyuan Country, Taiwan, R.O.C. were sampled. All four classes contained 75 students who were equally divided into an experimental group and a control group. The pre-test results indicated that the students’ entry-level physics academic achievement, science process skills, and computer attitudes were equal for both groups. On the post-test, the experimental group achieved significantly higher mean scores in physics academic achievement and science process skills. There was no significant difference in computer attitudes between the groups. We concluded that the IVPL had potential to help tenth graders improve their physics academic achievement and science process skills.  相似文献   

17.
This study was designed to determine the influence of resequencing general science content on sixth grade students' science achievement, attitudes toward science, and interest in science. Resequencing content was accomplished for experimental group students through revising the order of textbook chapters in a general science course, in order to clarify content structure and establish interrelationships among major concepts. The subjects were 203 sixth grade learners randomly assigned to the two treatment groups of resequenced content and nonresequenced content. The findings revealed that students for whom content structure was clarified through resequencing general science chapters exhibited significantly higher science achievement, significantly more positive attitudes toward science, and significantly greater interest in science than students for whom general science content was not resequenced.  相似文献   

18.
The recent literature has shown the importance of preservice elementary science teachers (PESTs) having a deep understanding of argumentation, as this factor may affect the nature of the class activities that are taught and what students learn. A lack of understanding of this factor may represent an obstacle in the development of science education programmes in line with the development of scientific competences. This paper presents the results of the design and implementation of a training programme of 6 sessions (12 h of class participation plus 8 h of personal homework) on argumentation. The programme was carried out by 57 Spanish PESTs from Malaga, Spain. The training programme incorporates the innovative use of certain strategies to improve competence in argumentation, such as teaching PESTs to identify the elements of arguments in order to design assessment rubrics or by including peer assessment during evaluation with and without rubrics. The results obtained on implementing the training programme were evaluated based on the development of PESTs’ argumentation competence using Toulmin’s argumentative model. Data collection methods involved two tasks carried out at the beginning and the end of the programme, i.e., pre- and post-test, respectively. The conclusion of the study is that students made significant progress in their argumentation competence on completing the course. In addition, PESTs who followed the training programme achieved statistically better results at the end than those in the control group (n = 41), who followed a traditional teaching programme. A 6-month transfer task showed a slight improvement for the PESTs of the experimental group in relation to the control group in their ability to transfer argumentation to practice.  相似文献   

19.
The purpose of the present study is to examine the effectiveness of a metacognitive prompts intervention‐science (MPI‐S), which is based on the nature of science with 162 eighth‐grade science students. It was hypothesised that students exposed to the intervention will show higher levels of content knowledge and knowledge about the nature of science than students in a comparison group. Attempts were also made to determine what cognitive processes are triggered during the use of metacognitive prompts. Findings showed significant improvements in students’ content knowledge and nature of science. In addition, qualitative findings revealed that the experimental group made choices based on evidence in the inquiry unit whereas the comparison group made decisions based on authority. Educational implications for practice into the classroom are discussed.  相似文献   

20.
The scientific competencies advocated by the Programme for International Student Assessment (PISA) focus on the abilities needed in students' adult lives. This study investigated how such scientific competencies could be improved by using online argumentation. One hundred and thirty-eight 8th grade high school students took part in the study, with 69 in the experimental group and 69 in the control group. A quasi-experimental design was adopted and qualitative and quantitative analyses were used. An online argumentation system served as an aid for argumentation instruction and activities among experimental group students during the experiment. The results showed that using online argumentation could improve the students' scores for the PISA scientific competencies. The experimental group students outperformed their counterparts in terms of overall mean scores for the scientific competencies. On the one hand, the individual competencies of ‘using scientific evidence’ and ‘identifying scientific issues’ of the experimental group were higher than those of the control group. On the other hand, the experimental group students did not outperform their counterparts in terms of competency in ‘explaining phenomena scientifically’. Using an online environment to complement argumentation instruction and organizing argumentation activities focused on related topics may be a potential direction to consider for improving students’ PISA scientific competencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号