首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today’s society is continuously coping with sustainability‐related complex issues in the Science‐Technology‐Environment‐Society (STES) interfaces. In those contexts, the need and relevance of the development of students’ higher‐order cognitive skills (HOCS) such as question‐asking, critical‐thinking, problem‐solving and decision‐making capabilities within science teaching have been argued by several science educators for decades. Three main objectives guided this study: (1) to establish “base lines” for HOCS capabilities of 10th grade students (n = 264) in the Israeli educational system; (2) to delineate within this population, two different groups with respect to their decision‐making capability, science‐oriented (n = 142) and non‐science (n = 122) students, Groups A and B, respectively; and (3) to assess the pre‐post development/change of students’ decision‐making capabilities via STES‐oriented HOCS‐promoting curricular modules entitled Science, Technology and Environment in Modern Society (STEMS). A specially developed and validated decision‐making questionnaire was used for obtaining a research‐based response to the guiding research questions. Our findings suggest that a long‐term persistent application of purposed decision‐making, promoting teaching strategies, is needed in order to succeed in affecting, positively, high‐school students’ decision‐making ability. The need for science teachers’ involvement in the development of their students’ HOCS capabilities is thus apparent.  相似文献   

2.
For educational technology integration in content disciplines to succeed, teachers and teacher educators need clear standards delineating why, how, where, and how much educational technology they should include in their teaching. This paper examines the visions offered by current science, mathematics, and educational technology standards for educational technology integration in K-12 schools. Since national assessments exert a profound influence on what teachers and students choose to teach and learn, the vision of educational technology use supported by national assessments is also examined. The National Council of Teachers of Mathematics Standards (NCTM, 2000. Principles and Standards for School Mathematics. Retrieved April 6, 2002 from http://standards.nctm.org), the National Science Education Standards (National Research Council (NRC) 1996. National Science Education Standards. Available at http://books.nap.edu/catalog/4962.html), and the National Educational Technology Standards (International Society for Technology in Education (ISTE) 2000. National Educational Technology Standards for Students: Connecting Curriculum and Technology, ISTE, Eugene, Oregon) provide different visions of educational technology use in the classroom. In addition, the current technology use policies for national assessments in science and mathematics, in particular the college admission tests (ACT, SAT I and SAT II subject area tests), Advanced Placement (AP) course assessments, and the Praxis Series assessments indicate that while mathematics assessments often recommend or require the use of educational technology, few science assessments permit the use of educational technology by students. Recommendations are offered for science educators regarding teacher preparation for the technology-rich classrooms of the future.  相似文献   

3.
Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support teachers in diagnosing their students’ emergent understandings of science inquiry practices, science content knowledge, and the academic language of science, with a particular focus on the needs of English-language learners. In our current school policy context, writing for meaningful purposes has received decreased attention as teachers struggle to cover large numbers of discrete content standards. Additionally, high-stakes assessments presented in multiple-choice format have become the definitive measure of student science learning, further de-emphasizing the value of academic writing for developing and expressing understanding. To counter these trends, we examine the implementation of educative assessment materials—writing-rich assessments designed to support teachers’ instructional decision making. We report on the qualities of our educative assessment that supported teachers in diagnosing their students’ emergent understandings, and how teacher–researcher collaborative scoring sessions and interpretation of assessment results led to changes in teachers’ instructional decision making to better support students in expressing their scientific understandings. We conclude with implications of this work for theory, research, and practice.  相似文献   

4.
5.
Abstract

The National Film Board of Canada is breaking new ground in educational technology with a pilot series of ‘interactive’ videos entitled Perspectives in Science. The series, aimed at the junior high school level, addresses issues of environmental and sociological concern not traditionally dealt with in formal science curricula. This paper examines the rationale behind the development of the Perspectives in Science video series. Science curriculum guidelines across Canada are being re‐written to reflect a change in education strategies that will encompass not only the teaching of scientific concepts, but also the applications of those concepts, as well as the implications of utilizing those concepts. Referred to as the ‘S‐T‐S’ connection, or, Science‐Technology‐Society, the new focus has been extensively documented by the Science Council of Canada and is currently causing a stir in the science teaching community as teachers scramble to find audio‐visual productions that address these new concerns and, at the same time, engage their students.

This paper also explains the design concept for presenting materials on S‐T‐S in an interactive model. Each video includes a short, open‐ended drama, followed by a number of ‘interactive components’. The tapes are ‘interactive’ in that teachers and students can choose to follow the material linearly or search for specific segments using the running time code as an electronic page reference. The interactive components consist of documentary style discussions with Canadians involved in some aspect of the scientific, technological, and societal issues presented, animated sequences, experiments, and filmography. The videos investigate issues of water, biotechnology, and toxic waste—with additional topics on soil, forestry, and air in production.

Finally, this paper documents the formative evaluation of the series noting the favourable response of teachers and students to the design concept and material content. The findings of this research indicated that the interactive video was both timely and appropriate for science teaching in view of major changes now being made to science curricula.  相似文献   

6.
Recently, a growing awareness of the relationship between assessment and learning has resulted in several major critiques of existing practice and proposals for reform in science education at national and regional levels. One initiative advocates the use of carefully constructed performance tasks that give students opportunities to demonstrate their understanding as they would in the world outside of school. The purpose of this study was to explore relationships among school students' (n = 189) acquisition of meaningful understandings of protein synthesis. Students were tested before and after protein synthesis instruction using a multiple choice assessment format and an open‐ended assessment format. The assessment instrument was designed to measure students' interrelated understanding of protein synthesis. An independent t‐test analysis was conducted on the posttests to measure retention of factual information and gender differences. Analysis of student‐generated analogies also revealed unique patterns in students' understandings of this topic. This research provides information for educators on students' acquisition of meaningful understandings of protein synthesis and has many implications for educators. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 1–22, 1999.  相似文献   

7.
The international science education community recognises the role of pre‐service science teachers’ views about the interdependence of Science, Technology, and Society (STS) in achieving scientific literacy for all. To this end, pre‐service science teachers’ STS views signal the strengths and the weaknesses of science education reform movements. Turkey, a country that follows the international reform movement, aims at improving citizen’s understanding of the STS interdependence to enable them to fully participate in an industrialised, democratic society. This study explores the Turkish pre‐service science teachers’ views (n = 176) on STS issues and discusses the ongoing reform efforts’ strengths and weaknesses within the context of the study findings. Data were collected through an adopted “Views on Science–Technology–Society” instrument. Analysis revealed that many participants held realistic views on science, technology, and society interdependence, while their views on technology and the nature of science were differed. Some viewed technology as an application of science, and some viewed science as explanatory and an interpretation of nature. Most agreed that the scientific knowledge is tentative but they did not present a thorough understanding of the differences between hypotheses, laws, and theories.  相似文献   

8.
Assessment influences every level of the education system and is one of the most crucial catalysts for reform in science curriculum and instruction. Teachers, administrators, and others who choose, assemble, or develop assessments face the difficulty of judging whether tasks are truly aligned with national or state standards and whether they are effective in revealing what students actually know. Project 2061 of the American Association for the Advancement of Science has developed and field‐tested a procedure for analyzing curriculum materials, including their assessments, in terms of how well they are likely to contribute to the attainment of benchmarks and standards. With respect to assessment in curriculum materials, this procedure evaluates whether this assessment has the potential to reveal whether students have attained specific ideas in benchmarks and standards and whether information gained from students' responses can be used to inform subsequent instruction. Using this procedure, Project 2061 had produced a database of analytical reports on nine widely used science middle school curriculum materials. The analysis of assessments included in these materials shows that whereas currently available materials devote significant sections in their instruction to ideas included in national standards documents, students are typically not assessed on these ideas. The analysis results described in the report point to strengths and limitations of these widely used assessments and identify a range of good and poor assessment tasks that can shed light on important characteristics of good assessment. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 889–910, 2002  相似文献   

9.
This study aimed to assess the influence of a philosophy of science (POS) course on science teachers’ views of nature of science (NOS), perceptions of teaching about NOS, and instructional planning related to NOS. Participants were 56 undergraduate and graduate preservice secondary science teachers enrolled in a two science‐methods course sequence, in which participants received explicit, reflective NOS instruction. Ten of these participants were also enrolled in a graduate survey POS course. The Views of Nature of Science Questionnaire — Form C coupled with individual interviews was used to assess participants’ NOS views at the beginning and conclusion of the study. Participants’ lesson plans and NOS‐specific reflection papers were analysed to assess the impact of the POS course on their instructional planning related to, and perceptions of teaching about, NOS. Results indicated that, compared with participants enrolled in the methods courses, the POS course participants developed deeper, more coherent understandings of NOS. Substantially more of these latter participants planned explicit instructional sequences to teach about NOS. Additionally, the POS course participants’ discourse regarding NOS progressed from a preoccupation with the technical, to a concern with the practical, and, finally, to a focus on the emancipatory. Their views of teaching about NOS in their future classrooms went beyond the customary discourse of whether pre‐college students should or could be taught about NOS, to contemplating changes they needed to bring about in their own teaching behaviour and language to achieve consistency with their newly acquired NOS understandings.  相似文献   

10.

Recent years have witnessed a dramatic rise in the number of middle and high school students from Asian countries participating in U.S.-based summer experiences (Perlez &; Gao, 2013). Although summer science camps have been shown to improve students’ attitudes and interests related to science and science learning (Bhattacharyya, Mead &; Nathaniel, School Science and Mathematics 111:345–353, 2011; Fields, International Journal of Science Education 31:151–171, 2009; Gibson &; Chase, Science Education 86:693–705, 2002; Luehmann, International Journal of Science Education 31:1831–1855, 2009), whether there are cognitive gains for visiting students in these short-term experiences is not well understood (Liu &; Lederman, School Science and Mathematics 102:114–123, 2002; Williams, Ma, Prejean, Ford &; Lai, Journal of Research on Technology in Education 40:201–216, 2007). This study explored the efficacy of a U.S. summer science camp to engender improved understandings about scientific inquiry (SI) among a group of gifted Taiwanese students (n = 19) in grades 8 and 9. Participants were completing an 80-h summer science camp at a Midwestern U.S. university. The Views About Scientific Inquiry (VASI) questionnaire (Lederman, Lederman, Bartos, Bartels, Antink Meyer &; Schwartz, Journal of Research in Science Teaching 51:65–83, 2014) was used to capture students’ views before and after camp participation, with modest gains evident for five of the eight aspects of scientific inquiry assessed. These gains were related to scientific investigations beginning with a question, the multiple methods of science, the role of the question in guiding procedures, the distinction between data and evidence, and the combination of data and what is already known in the development of explanations. Implications for the structure of science camps for supporting the development of SI understandings among students from Asian classrooms, and in general, are discussed.

  相似文献   

11.
A large number of American elementary school students are now studying science using the hands‐on inquiry curricula developed in the 1990s: Insights; Full Option Science System (FOSS); and Science and Technology for Children (STC). A goal of these programs, echoed in the National Science Education Standards, is that children should gain “abilities to do scientific inquiry” and “understanding about scientific inquiry.” We have studied the degree to which students can do inquiries by using four hands‐on performance assessments, which required one or three class periods. To be fair, the assessments avoided content that is studied in depth in the hands‐on programs. For a sample of about 1000 fifth grade students, we compared the performance of students in hands‐on curricula with an equal number of students with textbook curricula. The students were from 41 classrooms in nine school districts. The results show little or no curricular effect. There was a strong dependence on students' cognitive ability, as measured with a standard multiple‐choice instrument. There was no significant difference between boys and girls. Also, there was no difference on a multiple‐choice test, which used items released from the Trends in International Mathematics and Science Study (TIMSS). It is not completely clear whether the lack of difference on the performance assessments was a consequence of the assessments, the curricula, and/or the teaching. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 467–484, 2006  相似文献   

12.
Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand‐on, food‐based activities may strengthen students’ understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. Previous studies have shown that students experiencing the FoodMASTER curriculum were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations. The purpose of this study was to: (1) assess 4th graders food‐related multidisciplinary science knowledge, and (2) compare gains in food‐related science knowledge after implementation of an integrated, food‐based curriculum. During the 2009–2010 school year, FoodMASTER researchers implemented a hands‐on, food‐based intermediate curriculum in eighteen 4th grade classrooms in Ohio (n = 9) and North Carolina (n = 9). Sixteen classrooms in Ohio (n = 8) and North Carolina (n = 8), following their standard science curricula, served as comparison classrooms. Students completed a researcher‐developed science knowledge exam, consisting of 13 multiple‐choice questions administered pre‐ and post‐test. Only subjects with pre‐ and post‐test scores were entered into the sample (Intervention n = 343; Control n = 237). No significant differences were observed between groups at pre‐test. At post‐test, the intervention group scored (9.95 ± 2.00) significantly higher (p = 0.000) than the control group (8.84 ± 2.37) on a 13‐point scale. These findings suggest the FoodMASTER intermediate curriculum is more effective than a standard science curriculum in increasing students’ multidisciplinary science knowledge related to food.  相似文献   

13.
Shi  Xiaoming 《Science & Education》2021,30(2):409-440

Adopting an explicit and reflective approach to the teaching of the history and philosophy of science is useful in promoting high school students’ understanding of the nature of science. Whereas the history of science is usually signposted clearly in the school science curriculum, the philosophy of science is considered to be embedded in and integral to science education. This article argues that philosophical topics also need to be explicitly signposted and discussed in the teaching of the nature of science in high schools. This study investigates an interdisciplinary course on the nature of science in a Chinese senior high school. The course involved explicit teaching of philosophy of science topics with subject knowledge in each lesson. This mixed method design of the research included a modified version of the Views on Science, Technology and Society questionnaire as reported by Aikenhead and Ryan (Science Education, 76(5):477?491, 1992) and phenomenographical analysis. Although the sample size is small, the results suggest that explicit teaching of philosophy of science topics helps students better understand both the nature of science and the relationship between science, technology and society.

  相似文献   

14.
To a science ‘outsider’, science language often appears unnecessarily technical and dense. However, scientific language is typically used with the goal of being concise and precise, which allows those who regularly participate in scientific discourse communities to learn from each other and build upon existing scientific knowledge. One essential component of science language is the academic vocabulary that characterises it. This mixed-methods study investigates middle school students’ (N?=?59) growth in academic vocabulary as it relates to their teacher’s instructional practices that supported academic language development. Students made significant gains in their production of general academic words, t(57)?=?2.32, p?=?.024 and of discipline-specific science words, t(57)?=?3.01, p?=?.004 in science writing. Results from the qualitative strand of this inquiry contextualised the students’ learning of academic vocabulary as it relates to their teacher’s instructional practices and intentions as well as the students’ perceptions of their learning environment. These qualitative findings reveal that both the students and their teacher articulated that the teacher’s intentional use of resources supported students’ academic vocabulary growth. Implications for research and instruction with science language are shared.  相似文献   

15.
16.
ABSTRACT

Graduate students regularly teach undergraduate STEM courses and can positively impact students’ understanding of science. Yet little research examines graduate students’ knowledge about nature of science (NOS) or instructional strategies for teaching graduate students about NOS. This exploratory study sought to understand how a 1-credit Teaching in Higher Education course that utilised an explicit, reflective, and mixed-context approach to NOS instruction impacted STEM graduate students’ NOS conceptions and teaching intentions. Participants included 13 graduate students. Data sources included the Views of Nature of Science (VNOS-Form C) questionnaire administered pre- and post-instruction, semi-structured interviews with a subset of participants, and a NOS-related course project. Prior to instruction participants held many alternative NOS conceptions. Post-instruction, participants’ NOS conceptions improved substantially, particularly in their understandings of theories and laws and the tentative nature of scientific knowledge. All 12 participants planning to teach NOS intended to use explicit instructional approaches. A majority of participants also integrated novel ideas to their intended NOS instruction. These results suggest that a teaching methods course for graduate students with embedded NOS instruction can address alternative NOS conceptions and facilitate intended use of effective NOS instruction. Future research understanding graduate students' NOS understandings and actual NOS instruction is warranted.  相似文献   

17.
18.
The transfer of matter and energy from one organism to another and between organisms and their physical setting is a fundamental concept in life science. Not surprisingly, this concept is common to the Benchmarks for Science Literacy (American Association for the Advancement of Science, 1993 ), the National Science Education Standards (National Research Council, 1996 ), and most state frameworks and likely to appear in any middle‐school science curriculum material. Nonetheless, while topics such as photosynthesis and cellular respiration have been taught for many years, research on student learning indicates that students have difficulties learning these ideas. In this study, nine middle‐school curriculum materials—both widely used and newly developed—were examined in detail for their support of student learning ideas concerning matter and energy transformations in ecosystems specified in the national standards documents. The analysis procedure used in this study was previously developed and field tested by Project 2061 of the AAAS on a variety of curriculum materials. According to our findings, currently available curriculum materials provide little support for the attainment of the key ideas chosen for this study. In general, these materials do not take into account students' prior knowledge, lack representations to clarify abstract ideas, and are deficient in phenomena that can be explained by the key ideas and hence can make them plausible. This article concludes with a discussion of the implications of this study to curriculum development, teaching, and science education research based on shortcomings in today's curricula. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 538–568, 2004  相似文献   

19.
20.
The purpose of this research was to examine the consistency between students’ practical and formal understandings of scientific epistemologies (also known as nature of science (NOS) understandings) in the context of a research apprenticeship program. Six high school student participants of a residential summer research apprenticeship program at a major university in the southeastern USA were interviewed twice during their experience to elicit their perspectives regarding their practical epistemologies. A phenomenological approach was used to analyze these interviews. The students held practical epistemological understandings of scientific knowledge that were described as being developmental, valuable, formulaic, and authoritative. A survey administered at the end of the program was used to reveal students’ formal epistemologies of science. These practical and formal epistemologies were described in terms of Sandoval’s (Science Education 89:634–656, 2005) epistemological themes and then compared for all participants. Findings revealed that, for most students, at least some level of consistency was present between their formal and practical epistemological understandings of each theme. In fact, for only one student with one theme, no consistency was evident. These results hold implications for the teaching, learning, and assessment of NOS understandings in these contexts as well as for the design of apprenticeship learning experiences in science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号