首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research has found students' epistemic beliefs to predict their achievement goal orientations. Much of this research emerged from the dimensional approach of epistemic beliefs, which hypothesized a relationship between particular independent dimensions of epistemic beliefs with different achievement goals. Research in this approach has primarily applied a variable-centered approach to investigating these relations. The authors adopt an alternative conceptualization of epistemic beliefs, which considers epistemic beliefs and achievement goals as orthogonal to each other, and which favors a profile-centered approach to researching their relations. They hypothesized that while a variable-centered analysis would identify relations between epistemic beliefs and achievement goal orientations, a profile-centered analysis would demonstrate the independence of these psychological constructs. In three studies with high school students (ns = 256, 149, 250) the authors demonstrate that epistemic beliefs and achievement goals form different personal profiles that are differentially related to learning strategies.  相似文献   

2.
Abstract

The authors investigated the influence of engaging in a problem-based learning unit on middle school students' epistemic beliefs, and how such students' epistemic beliefs and approaches to argumentation within and outside of their small groups related. Data sources include state science achievement test scores, epistemic beliefs pre- and posttests, videotaped class sessions, retrospective interviews, and pre- and post-cognitive interviews. Quantitative data were collected and analyzed from 59 students, while the qualitative subsample consisted of 15 students. Engaging in problem-based learning led to a significant effect on students' epistemic beliefs. The effect was of a large magnitude among high-achieving students, of a small magnitude among average-achieving students, and of a small negative magnitude among lower-achieving students. Students employed different approaches to generating and evaluating arguments in different ecosystems, including as small groups and in discussions with the teacher.  相似文献   

3.
The 2015 Programme for International Student Assessment (PISA) has drawn a substantial amount of attention from science educators and educational policymakers because it marked the first time that PISA assessed students' ability to evaluate and design scientific inquiry using computer-based simulations. We undertook a secondary analysis of the PISA 2015 Taiwan dataset of 7,973 students from 214 schools to identify critical issues of student learning and potentially reshape our educational system and policies. Thus, this study sought to identify potential latent clusters of students' scientific literacy performance according to a set of focus variables selected from the PISA student questionnaires. In addition, significant determinants of students' scientific literacy and resiliency were analyzed. Cluster analysis results demonstrated the presence of four clusters of high, medium, low, and inferior scientific literacy/epistemology/affective dispositions. Specifically, students in cluster 1 compared with other clusters showed that the higher the scientific literacy scores are, the more positive epistemic beliefs about science, achievement motivation, enjoyment of science, interests in broad science, science self-efficacy, information and communications technology (ICT) interest, ICT autonomy, more learning time, more teacher supports and teacher-directed instructions are. Regression results indicated that the most robust predictor of students' scientific literacy performance is epistemic beliefs about science, followed by learning time, interest in broad science topics, achievement motivation, inquiry-based science teaching and learning practice, and science self-efficacy. Decision tree model results showed that the descending order of the variables in terms of their importance in differentiating students as high- versus low-performing were epistemic beliefs about science, learning time, self-efficacy, interest in broad science, and scientific inquiry, respectively. A similar decision tree model to determine students as resilient versus non-resilient also was found. Various interpretations of these results are discussed, as are their implications for science education research, science teaching, and science education policy.  相似文献   

4.

Responses to a written beliefs test for 178 eighth grade students and interviews with a subset of the students are analysed to investigate students' beliefs about the tentativeness of scientific knowledge and about the autonomy and strategies appropriate for science learning. These three dimensions of beliefs are salient because they align with the image of science teaching promoted by current reform movements. Analyses focus on change in beliefs and relationships among dimensions of beliefs and between those beliefs and students' understandings of science concepts. Results show that students' beliefs do not change much during the one-semester course. Students who view scientific knowledge as tentative also try to understand science. Autonomous students do not hold the most productive learning strategies, though students with low autonomy develop significantly less coherent understandings of science concepts. Instructional implications focus on potential roles of teachers and technology in promoting productive beliefs about scientific knowledge and science learning. Implications for individualized instruction follow classroom-level implications.  相似文献   

5.
The purpose of this study was to compare the associations of epistemic beliefs in science, performance of scientific reasoning in university students from Taiwan and India, and the relations with their science learning experiences. A total of 126 university students including 67 from Taiwan and 59 from India who had science and mathematics backgrounds were involved in the study. Students’ epistemic beliefs in science were assessed by the SEV questionnaire, while their reasoning performance and learning experiences were prompted by open-ended questions and survey items. Content analysis was performed to analyze their scientific reasoning, and correlation analysis, t tests and ANOVA were applied to reveal the associations between variables. The results showed that students from both countries differed in epistemic beliefs in the dimensions of certainty, development and justification. While few students from either country performed successfully in identifying genuine evidence and giving full rebuttals, Taiwanese participants seemed to demonstrate slightly better scientific reasoning. It was found that the Indian students were more balanced in receiving structured and engaged learning experiences. Varying associations for the students from the different countries were found between epistemic beliefs and scientific reasoning performance, and between epistemic beliefs and science learning experiences.  相似文献   

6.
Students' epistemological beliefs about scientific knowledge and practice are one important influence on their approach to learning. This article explores the effects that students' inquiry during a 4‐week technology‐supported unit on evolution and natural selection had on their beliefs about the nature of science. Before and after the study, 8 students were interviewed using the Nature of Science interview developed by Carey and colleagues. Overall, students held a view of science as a search for right answers about the world. Yet, the inconsistency of individuals' responses undermines the assumption that students have stable, coherent epistemological frameworks. Students' expressed ideas did not change over the course of the intervention, suggesting important differences between students' talk during inquiry and their abilities to talk epistemologically about science. Combined with previous work, our findings emphasize the crucial role of an explicit epistemic discourse in developing students' epistemological understanding. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 369–392, 2003  相似文献   

7.
8.
This study examined the relationships among Taiwanese high school students’ scientific epistemic beliefs, conceptions of learning science, and self-efficacy of learning science. The questionnaire responses gathered from 377 high school students in Taiwan were utilized to elicit such relationships. The analysis of the structural equation model revealed that students’ absolutist scientific epistemic beliefs led to lower-level conceptions of learning science (i.e. learning science as memorizing, preparing for tests, calculating, and practicing) while sophisticated scientific epistemic beliefs might trigger higher-level conceptions of learning science (i.e. learning science as increase of knowledge, applying, and attaining understanding). The students’ lower-level conceptions of learning science were also found to negatively associate with their self-efficacy of learning science, while the higher-level conceptions of learning science fostered students’ self-efficacy. However, this study found that students who viewed scientific knowledge as uncertain (advanced epistemic belief) tended to possess lower self-efficacy toward learning science.  相似文献   

9.
This article reports on analyses of the instructional practices of six middle- and high-school science teachers in the United States who participated in a research-practice partnership that aims to support reform science education goals at scale. All six teachers were well qualified, experienced, and locally successful—respected by students, parents, colleagues, and administrators—but they differed in their success in supporting students' three-dimensional learning. Our goal is to understand how the teachers' instructional practices contributed to their similarities in achieving local success and to differences in enabling students' learning, and to consider the implications of these findings for research-practice partnerships. Data sources included classroom videos supplemented by interviews with teachers and focus students and examples of student work. We also compared students' learning gains by teacher using pre–post assessments that elicited three-dimensional performances. Analyses of classroom videos showed how all six teachers achieved local success—they led effectively managed classrooms, covered the curriculum by teaching almost all unit activities, and assessed students' work in fair and efficient ways. There were important differences, however, in how teachers engaged students in science practices. Teachers in classrooms where students achieved lower learning gains followed a pattern of practice we describe as activity-based teaching, in which students completed investigations and hands-on activities with few opportunities for sensemaking discussions or three-dimensional science performances. Teachers whose students achieved higher learning gains combined the social stability characteristic of local classroom success with more demanding instructional practices associated with scientific sensemaking and cognitive apprenticeship. We conclude with a discussion of implications for research-practice partnerships, highlighting how partnerships need to support all teachers in achieving both local and standards-based success.  相似文献   

10.
This study had the goal of investigating the association among elementary students' (N = 276) science and math beliefs and the relationship between those beliefs and teachers' ratings of mathematical and science understanding. Results of structural path analysis indicate that in science, intellectual risk‐taking (IRT; the willingness to share tentative ideas, ask questions, attempting to do, and learn new things) was positively related to teachers' ratings of science understanding, while creative self‐efficacy (CSE) beliefs (i.e., students' confidence in their ability to generate ideas and solutions in science) were indirectly related (working through IRT). Results also indicate that students' scientific certainty beliefs (i.e., the belief that science knowledge is stable, fixed, and represented by correct answers) were negatively related to teachers' ratings of science understanding. With respect to math, results indicate that students' CSE beliefs were positively related to teachers' ratings of math understanding; whereas students' mathematical source beliefs (i.e., believing that math knowledge originates from external sources) were negatively related. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 942–960, 2012  相似文献   

11.
This paper presents the third study of research trends in science education. In this review, a total of 990 papers published in the International Journal of Science Education, the Journal of Research in Science Teaching, and Science Education from 2008 to 2012 were analyzed. The results indicate that in the recent five years (2008–2012), the top three research topics in the published papers were those regarding the context of students' learning, science teaching, and students' conceptual learning. The changes in the most popular research topics in the past 15 years also evidentially indicate shifts in the journals' preferences and researchers' interest. For example, in 2003–2007, context of students' learning replaced students' conceptual learning, which was the most published research topic from 1998 to 2002. The research topic of students' learning contexts continued to rank the first in 2008–2012. Moreover, there was an increasing trend of research papers regarding science teaching from 1998 to 2012. The analysis of highly cited papers revealed that research topics such as argumentation, inquiry-based learning, and scientific modeling were recently highlighted by science educators. In recent 15 years, productive researchers' publications also focused on the topics about context of students' learning, science teaching, and students' conceptual learning.  相似文献   

12.
This is a mix methods follow‐up study in which we reconfirm the findings from an earlier study [Vedder‐Weiss & Fortus [ 2011 ] Journal of Research in Science Teaching, 48(2), 199–216]. The findings indicate that adolescents' declining motivation to learn science, which was found in many previous studies [Galton [ 2009 ] Moving to secondary school: Initial encounters and their effects. Perspectives on Education, 2(Primary‐secondary Transfer in Science), 5–21. Retrieved from www.wellcome.ac.uk/perspectives ; Osborne, Simon, & Collins, [2003] International Journal of Science Education 25(9), 1049–1079], is not an inevitable phenomenon since it appears not to occur in Israeli democratic schools. In addition to reinforcing previous results in a different sample, new results show that the differences between the two school types are also apparent in terms of students' self‐efficacy in science learning, students' perceptions of their teachers' goals emphases, and students' perception of their peers' goals orientation. Quantitative results are accompanied by rich verbal examples of ways in which students view and articulate their own and their teachers' goal emphases. Content analysis of students' interviews showed that students in traditional schools are directed more towards goals that are external and related to the outcome of learning in comparison to democratic school students who are motivated more by goals that are internal and related to the process of learning. Structure analysis of these interviews suggests that democratic school students experience a greater sense of autonomy in their science learning than traditional school students do. Implications for research on students' motivation are discussed, such as considering not only the teacher and the classroom but also the school culture. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1057–1095, 2012  相似文献   

13.
This study explores the process of teacher scaffolding student engagement in epistemic tools from the critical sensemaking perspective. Epistemic tools are contextual artifacts manipulated to investigate and evaluate ideas to construct knowledge within the constraints of a disciplines' representational means. The main sources of our data are ~50 min-long semistructured, responsive interviews with the 14 secondary school science teachers who participated in our professional learning environment (PLE) and implemented the activities from the PLE in their classrooms. We utilized the tools of discourse analysis to explore teacher sensemaking while they learned to teach science with epistemic tools. We then looked at intertextualities of meaning across multiple sets of data such as students' artifacts, pre/postsurveys, audio and video recordings of the workshops, and teachers' written implementation feedback forms. As a result, we recognized a pattern across different classrooms. Teachers would begin with a contextualized goal, and use a pedagogical strategy to scaffold their students as they worked to achieve that goal. Then, all teachers reported they faced some sort of ambiguity (such as grappling with failure, different levels of students). When faced with an ambiguity, teachers would then revise either their contextualized goal or their initial pedagogical strategy to help their students to reach their goals. Finally, we utilized constant-comparative analysis to identify themes for teachers' contextualized goals. Four major themes emerged, including communicating connections to core ideas of science, making sense of how science works, assessing students' learning process outcomes, and fostering students' epistemic agency. The findings of the study have implications for future research and professional development activities on the use of epistemic practices and tools in classrooms with unique contextual characteristics.  相似文献   

14.
We propose a theoretical model linking students' epistemic beliefs, epistemic emotions, learning strategies, and learning outcomes. The model was tested across two studies with 439 post-secondary students from Canada, the United States, and Germany for Study 1, and 56 students from Canada for Study 2. For Study 1, students self-reported their epistemic beliefs about climate change, read four conflicting documents about the causes and consequences of climate change, self-reported their epistemic emotions and learning strategies used to learn the content, and were given an inference verification test to measure learning. Study 2 used the same procedure but added a think aloud protocol to capture self-regulatory processes and emotions as they occurred. Path analyses revealed that epistemic beliefs served as important antecedents to the epistemic emotions students experienced during learning. Students who believed that the justification of knowledge about climate change requires critical evaluation of multiple sources experienced higher levels of enjoyment and curiosity, and lower levels of boredom when confronted with conflicting information. A belief in the complexity of this knowledge was related to lower levels of confusion, anxiety, and boredom. A belief in the uncertainty of this knowledge predicted lower levels of anxiety and frustration, and a belief in the active construction of knowledge predicted lower levels of confusion. Epistemic emotions predicted the types of learning strategies students used to learn the content and mediated relations between epistemic beliefs and learning strategies. Learning strategies predicted learning outcomes and mediated relations between epistemic emotions and learning outcomes. Implications for research on epistemic beliefs, epistemic emotions, and students' self-regulated learning are discussed.  相似文献   

15.
Students' personal theories about education change as students gather new evidence about intelligence, learning, and knowledge. The present study investigated whether college instructors' play a role in changing students' personal theories with the messages professors send in the classroom. Students (N = 162) and instructors (N = 15) of undergraduate-level math and science summer courses completed surveys assessing personal theories about education and the frequency of messages related to educational beliefs. Multilevel models found that both between-class and within-class differences in reported messages corresponded with students' personal beliefs at the end of the course. Instructors' personal theories were generally not predictive of students' personal theories, and students' initial personal theories predicted the messages they remembered hearing.  相似文献   

16.
To study the contribution of perceived parent achievement goals to students' attitudes towards academic help seeking, 4th, 6th, 7th, and 9th grade students in Greece (n = 712) reported perceptions of their parents' achievement goals, personal achievement goal orientations, and help-seeking beliefs and intentions. Students' mastery goal orientation positively predicted their help-seeking attitudes (perceived benefits and intentions to seek help) and negatively predicted their help-seeking avoidance attitudes (perceived costs and intentions to avoid seeking help), whereas performance-avoidance orientation directly predicted their help-seeking avoidance attitudes. Multiple-group path analysis indicated that perceived parent goals predicted student help seeking and help avoidance attitudes through students' own achievement goal orientations. Further, the pattern of relations varied by grade level. Results are discussed in light of current theory and research on the developmental phases of parental influence on student motivation and self-regulated learning.  相似文献   

17.
The development of three-dimensional learning among all K-12 student demographics remains a prominent goal for the field of science education. However, substantial research in science teacher education for urban populations showcases hurdles to overcome in order to achieve this goal, particularly for elementary teachers. Research shows that urban elementary teachers are often ill-prepared to develop a type of science pedagogy responsive to students' learning needs. The fidelity of such pedagogies that these teachers adhere to when trying to implement such a requested content–relationality between these populations and how their local contexts can be used as sites to learn science in relevant ways are often not fully realized, as well. Given that science achievement gaps exhibit racial disparities starting in primary grades and attitudes toward science have been shown to affect academic achievement and motivation, we argue that one way to ameliorate, in at least an incremental way, this disparity is to design novel learning experiences to prime students to see the relevancy of science in their local contexts before such three-dimensional designed learning is set to occur. In this research, we leveraged the immersive nature of Virtual Reality 360 videos and present a design-based research iteration testing how this novel technologically enhanced learning experience may have influenced close to 400 urban elementary students' attitudes toward science around those attitudes labeled as “behavioral beliefs” by the field. Using a concurrent, convergent mixed-methods design with a two-way multivariate analysis of covariance quantitative data set triangulated with students' qualitative self-reports that were transformed into quantitative preponderances in graphic form, the data support that our design iteration emphasizing the importance of context as a design focus can prime students who struggle to see science as relevant to change their attitudes. Implications are discussed around relationality, novel technological affordances, and the use of local contexts as learning resources.  相似文献   

18.

Informal learning experiences have risen to the forefront of science education as being beneficial to students' learning. However, it is not clear in what ways such experiences may be beneficial to students; nor how informal learning experiences may interface with classroom science instruction. This study aims to acquire a better understanding of these issues by investigating one aspect of science learning, scientific reasoning ability, with respect to the students' informal learning experiences and classroom science instruction. Specifically, the purpose of this study was to investigate possible differences in students' scientific reasoning abilities relative to their informal learning environments (impoverished, enriched), classroom teaching experiences (non-inquiry, inquiry) and the interaction of these variables. The results of two-way ANOVAs indicated that informal learning environments and classroom science teaching procedures showed significant main effects on students' scientific reasoning abilities. Students with enriched informal learning environments had significantly higher scientific reasoning abilities compared to those with impoverished informal learning environments. Likewise, students in inquirybased science classrooms showed higher scientific reasoning abilities compared to those in non-inquiry science classrooms. There were no significant interaction effects. These results indicate the need for increased emphases on both informal learning opportunities and inquiry-based instruction in science.  相似文献   

19.
Epistemic beliefs are individual beliefs about knowledge and knowledge acquisition. Empirical studies indicate that learners’ epistemic beliefs influence their learning processes and success (e.g. motivation, text comprehension, learning strategy selection, grades). Teachers and trainers can support their apprentices in developing preferable epistemic beliefs to facilitate learning. To do this, instructors need information on learners’ current beliefs for lesson planning and monitoring epistemic beliefs development. The following paper reports the validation of a tool for generating this kind of information: the Instrument for Measuring Epistemic Beliefs in Marketing. The instrument validation is based on three studies (Study I: 225 university trained business administration students; Study II: 531 vocationally trained retailers/wholesalers; Study III: 179 vocationally trained bank assistants). It reveals high reliabilities (α values about .700), stable factor structures, and incremental validity in comparison to general epistemic beliefs. The new questionnaire is able to predict grades in marketing and can be used to diagnose apprentices’ epistemic beliefs for adjusting instruction to learners’ preconditions. Findings based on the new instrument indicate that apprentices show partly unfavourable epistemic beliefs. As a result, supporting learners in developing preferable beliefs provides an opportunity to increase their learning success.  相似文献   

20.
Elementary teachers play a crucial role in supporting and scaffolding students’ model-based reasoning about natural phenomena, particularly complex systems such as the water cycle. However, little research exists to inform efforts in supporting elementary teachers’ learning to foster model-centered, science learning environments. To address this need, we conducted an exploratory multiple-case study using qualitative research methods to investigate six 3rd-grade teachers’ pedagogical reasoning and classroom instruction around modeling practices (construct, use, evaluate, and revise) and epistemic considerations of scientific modeling (generality/abstraction, evidence, mechanism, and audience). Study findings show that all teachers emphasized a subset of modeling practices—construction and use—and the epistemic consideration of generality/abstraction. There was observable consistency between teachers’ articulated conceptions of scientific modeling and their classroom practices. Results also show a subset of the teachers more strongly emphasized additional epistemic considerations and, as a result, better supported students to use models as sense-making tools as well as representations. These findings provide important evidence for developing elementary teacher supports to scaffold students’ engagement in scientific modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号