首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
The aim of the study was to examine several physiological responses to a climbing-specific task to identify determinants of endurance in sport rock climbing. Finger strength and endurance of intermediate rock climbers (n = 11) and non-climbers (n = 9) were compared using climbing-specific apparatus. After maximum voluntary contraction (MVC) trials, two isometric endurance tests were performed at 40% (s = 2.5%) MVC until volitional exhaustion (continuous contractions and intermittent contractions of 10 s, with 3 s rest between contractions). Changes in muscle blood oxygenation and muscle blood volume were recorded in the flexor digitorum superficialis using near infra-red spectroscopy. Statistical significance was set at P < 0.05. Climbers had a higher mean MVC (climbers: 485 N, s = 65; non-climbers 375 N, s = 91) (P = 0.009). The group mean endurance test times were similar. The force-time integral, used as a measure of climbing-specific endurance, was greater for climbers in the intermittent test (climbers: 51,769 N x s, s = 12,229; non-climbers: 35,325 N x s, s = 9724) but not in the continuous test (climbers: 21,043 N x s, s = 4474; non-climbers: 15,816 N x s, s = 6263). Recovery of forearm oxygenation during rest phases (intermittent test) explained 41.1% of the variability in the force-time integral. Change in total haemoglobin was significantly greater in non-climbers (continuous test) than climbers (P = 0.023--40% test timepoint, P = 0.014--60% test timepoint). Pressor responses were similar between groups and not related to the force-time integral for either test. We conclude that muscle re-oxygenation during rest phases is a predictor of endurance performance.  相似文献   

3.
Abstract

The aim of the study was to examine several physiological responses to a climbing-specific task to identify determinants of endurance in sport rock climbing. Finger strength and endurance of intermediate rock climbers (n = 11) and non-climbers (n = 9) were compared using climbing-specific apparatus. After maximum voluntary contraction (MVC) trials, two isometric endurance tests were performed at 40% (s = 2.5%) MVC until volitional exhaustion (continuous contractions and intermittent contractions of 10 s, with 3 s rest between contractions). Changes in muscle blood oxygenation and muscle blood volume were recorded in the flexor digitorum superficialis using near infra-red spectroscopy. Statistical significance was set at P < 0.05. Climbers had a higher mean MVC (climbers: 485 N, s = 65; non-climbers 375 N, s = 91) (P = 0.009). The group mean endurance test times were similar. The force – time integral, used as a measure of climbing-specific endurance, was greater for climbers in the intermittent test (climbers: 51,769 N · s, s = 12,229; non-climbers: 35,325 N · s, s = 9724) but not in the continuous test (climbers: 21,043 N · s, s = 4474; non-climbers: 15,816 N · s, s = 6263). Recovery of forearm oxygenation during rest phases (intermittent test) explained 41.1% of the variability in the force – time integral. Change in total haemoglobin was significantly greater in non-climbers (continuous test) than climbers (P = 0.023 – 40% test timepoint, P = 0.014 – 60% test timepoint). Pressor responses were similar between groups and not related to the force – time integral for either test. We conclude that muscle re-oxygenation during rest phases is a predictor of endurance performance.  相似文献   

4.
There is limited information on the anthropometry, strength, endurance and flexibility of female rock climbers. The aim of this study was to compare these characteristics in three groups of females: Group 1 comprised 10 elite climbers aged 31.3 +/- 5.0 years (mean +/- s) who had led to a standard of 'hard very severe'; Group 2 consisted of 10 recreational climbers aged 24.1 +/- 4.0 years who had led to a standard of 'severe'; and Group 3 comprised 10 physically active individuals aged 28.5 +/- 5.0 years who had not previously rock-climbed. The tests included finger strength (grip strength, finger strength measured on climbing-specific apparatus), flexibility, bent arm hang and pull-ups. Regression procedures (analysis of covariance) were used to examine the influence of body mass, leg length, height and age. For finger strength, the elite climbers recorded significantly higher values (P < 0.05) than the recreational climbers and non-climbers (four fingers, right hand: elite 321 +/- 18 N, recreational 251 +/- 14 N, non-climbers 256 +/- 15 N; four fingers, left hand: elite 307 +/- 14 N, recreational 248 +/- 12 N, non-climbers 243 +/- 11 N). For grip strength of the right hand, the elite climbers recorded significantly higher values than the recreational climbers only (elite 338 +/- 12 N, recreational 289 +/- 10 N, non-climbers 307 +/- 11 N). The results suggest that elite climbers have greater finger strength than recreational climbers and non-climbers.  相似文献   

5.
In this study, we investigated resting left ventricular dimensions and function in trained female rowers, canoeists and cyclists. In male populations, such athletes have demonstrated the largest left ventricular wall thicknesses and cavity dimensions. Echocardiograms were analysed from 24 athletes (rowers and canoeists, n = 12; cyclists, n = 12) and 21 age-matched controls to measure left ventricular end-diastolic dimension and volume, and septal (ST) and posterior wall (PWT) thicknesses. Left ventricular mass was calculated from M-mode data. Systolic and diastolic function were calculated from M-mode and Doppler echocardiography, respectively. Height, body mass, body surface area and fat-free mass were determined anthropometrically. The athletes were well matched with the controls for all anthropometric variables except fat-free mass (rowers and canoeists 49.7+/-3.6 kg, cyclists 48.0+/-3.8 kg, controls 45.0+/-5.4 kg; P < 0.05). The left ventricular end-diastolic dimension, mass and volume, and septal and posterior wall thicknesses, were all significantly greater in the athletes than the controls (P < 0.05). These differences persisted (except for left ventricular end-diastolic dimension) even after allometric adjustment for group differences in fat-free mass. Stroke volume was larger (rowers and canoeists 102+/-13 ml, cyclists 103+/-16 ml, controls 80+/-15 ml; P < 0.05) in both groups of athletes but all other functional data were similar between groups. As in male athletes, female rowers, canoeists and cyclists displayed significantly larger left ventricular cavity dimensions and wall thicknesses than controls.  相似文献   

6.
Different ambient temperatures are known to affect muscular performance based on the type of contraction. The effect of cold (10°C) and thermoneutral (TN) (24°C) ambient temperatures on finger flexor performance was examined in 12 rock climbers. After 30?min of seated rest in the designated temperature condition, participants completed maximal voluntary contractions (MVC) on a climbing-specific finger flexor assessment device equipped with a crimp grip hold. Participants then completed an intermittent fatiguing task until failure. The fatiguing task consisted of 10-s contractions at 40% MVC followed by a 3-s of rest. MVC recovery was assessed immediately, 5, 10, and 15?min post-task failure. Estimated muscle temperature and subjective thermal ratings were significantly lower throughout testing in the cold condition (P?<?.001). Finger flexor MVC strength was similar between conditions at baseline and throughout recovery. Time to task failure was significantly longer (364?±?135 vs. 251?±?97 s, P?=?.003) and force time integral was greater (53,715?±?19,988 vs. 40,243?±?15,360?Ns, P?=?.001) during the cold condition. No significant differences were found between conditions for force variability or electromyography (EMG) at the start and end of the fatiguing task. However, the rate of increase in EMG for the TN condition was significantly faster (P?=?.03). These results suggest important implications for researchers when examining climbing performance, especially in outdoor settings where temperatures may vary from day to day. Inconsistencies in testing temperatures might significantly affect muscular endurance.  相似文献   

7.
Twelve endurance athletes and six power athletes performed fatiguing isokinetic knee flexions/extensions. Isokinetic torque was recorded during the exercise. Isometric torque, cortisol and lactate responses, electromyographic (EMG) mean power frequency, average rectified value, and conduction velocity were analysed before and after the isokinetic exercise to determine correlations between electrophysiological variables and mechanical performances and/or blood concentrations of biomarkers in the two groups of athletes. The EMG variables were estimated from signals recorded from the vastus lateralis in both voluntary and electrically elicited isometric contractions. Power athletes recorded higher values than endurance athletes for the following variables: pre-exercise isometric maximal voluntary contraction (MVC), isokinetic MVC, rate of mechanical fatigue during isokinetic contractions, pre - post exercise variations and recovery times of conduction velocity and mean power frequency, and lactate concentrations. Moreover, conduction velocity overshooting was observed in endurance athletes during the recovery phase after exercise. The correlation analyses showed that the higher the rate of mechanical fatigue, the higher the lactate production and the reduction in conduction velocity due to the exercise.  相似文献   

8.
In this study,we investigated resting left ventricular dimensions and function in trained female rowers, canoeists and cyclists. In male populations, such athletes have demonstrated the largest left ventricular wall thicknesses and cavity dimensions. Echocardiograms were analysed from 24 athletes (rowers and canoeists, n=12; cyclists, n=12) and 21 age-matched controls to measure left ventricular end-diastolic dimension and volume, and septal (ST) and posterior wall (PWT) thicknesses. Left ventricular mass was calculated from M-mode data. Systolic and diastolic function were calculated from M-mode and Doppler echocardiography, respectively. Height, body mass, body surface area and fat-free mass were determined anthropometrically. The athletes were well matched with the controls for all anthropometric variables except fat-free mass (rowers and canoeists 49.7 3.6 kg, cyclists 48.0?+\- 3.8 kg, controls 45.0?+\- 5.4 kg; P < 0.05). The left ventricular end-diastolic dimension, mass and volume, and septal and posterior wall thicknesses, were all significantly greater in the athletes than the controls (P < 0.05). These differences persisted (except for left ventricular end-diastolic dimension) even after allometric adjustment for group differences in fat-free mass. Stroke volume was larger (rowers and canoeists 102?+\- 13 ml, cyclists 103?+\0 16 ml, controls 80?+\- 15 ml; P < 0.05) in both groups of athletes but all other functional data were similar between groups. As in male athletes, female rowers, canoeists and cyclists displayed significantly larger left ventricular cavity dimensions and wall thicknesses than controls.  相似文献   

9.
Endurance running performance in athletes with asthma   总被引:1,自引:0,他引:1  
Laboratory assessment was made during maximal and submaximal exercise on 16 endurance trained male runners with asthma (aged 35 +/- 9 years) (mean +/- S.D.). Eleven of these asthmatic athletes had recent performance times over a half-marathon, which were examined in light of the results from the laboratory tests. The maximum oxygen uptake (VO2max) of the group was 61.8 +/- 6.3 ml kg-1 min-1 and the maximum ventilation (VEmax) was 138.7 +/- 24.7 l min-1. These maximum cardio-respiratory responses to exercise were positively correlated to the degree of airflow obstruction, defined as the forced expiratory volume in 1 s (expressed as a percentage of predicted normal). The half-marathon performance times of 11 of the athletes ranged from those of recreational to elite runners (82.4 +/- 8.8 min, range 69-94). Race pace was correlated with VO2max (r = 0.863, P less than 0.01) but the highest correlation was with the running velocity at a blood lactate concentration of 2 mmol l-1 (r = 0.971, P less than 0.01). The asthmatic athletes utilized 82 +/- 4% VO2max during the half-marathon, which was correlated with the %VO2max at 2 mmol l-1 blood lactate (r = 0.817, P less than 0.01). The results of this study suggest that athletes with mild to moderate asthma can possess high VO2max values and can develop a high degree of endurance fitness, as defined by their ability to sustain a high percentage of VO2max over an endurance race. In athletes with more severe airflow obstruction, the maximum ventilation rate may be reduced and so VO2max may be impaired. The athletes in the present study have adapted to this limitation by being able to sustain a higher %VO2max before the accumulation of blood lactate, which is an advantage during an endurance race. Therefore, with appropriate training and medication, asthmatics can successfully participate in endurance running at a competitive level.  相似文献   

10.
There is limited information on the anthropometry, strength, endurance and flexibility of female rock climbers. The aim of this study was to compare these characteristics in three groups of females: Group 1 comprised 10 elite climbers aged 31.3 ± 5.0 years (mean ± s ) who had led to a standard of ‘hard very severe’; Group 2 consisted of 10 recreational climbers aged 24.1 ± 4.0 years who had led to a standard of ‘;severe’; and Group 3 comprised 10 physically active individuals aged 28.5 ± 5.0 years who had not previously rock-climbed. The tests included finger strength (grip strength, finger strength measured on climbing-specific apparatus), flexibility, bent arm hang and pull-ups. Regression procedures (analysis of covariance) were used to examine the influence of body mass, leg length, height and age. For finger strength, the elite climbers recorded significantly higher values ( P < 0.05) than the recreational climbers and non-climbers (four fingers, right hand: elite 321 ± 18 N, recreational 251 ± 14 N, non-climbers 256 ± 15 N; four fingers, left hand: elite 307 ± 14 N, recreational 248 ± 12 N, non-climbers 243 ± 11 N). For grip strength of the right hand, the elite climbers recorded significantly higher values than the recreational climbers only (elite 338 ± 12 N, recreational 289 ± 10 N, non-climbers 307 ± 11 N). The results suggest that elite climbers have greater finger strength than recreational climbers and non-climbers.  相似文献   

11.
Hiking physiology and the "quasi-isometric" concept   总被引:1,自引:0,他引:1  
The literature indicates that the heart rate of a planing-dinghy sailor, in winds of 4 - 5 m . s(-1), is in the range seen in aerobic athletes, yet oxygen consumption (VO(2)) is roughly half that of the same individual cycling at that heart rate. Thus, although upper-body dynamic activity is a contributing factor, the dominant physiological demand must be the "quasi-isometric" stress on the lower-body anterior muscles - especially the quadriceps, which appears to impose 40 - 50% of the total oxygen demand in a typical hiking posture. Therefore, a non-trivial part of the sailor's fitness training should involve sustained quadriceps stress. Estimates of this stress on water vary widely in the literature, but about 25 - 30% maximal voluntary contraction (MVC) tallies with endurance times recorded both in the literature and in an outline of new work reported here. Muscle blood flow is restricted under such a load, but not occluded. Laser Doppler measurements of femoral blood flow on a leg-extension ergometer found similar values during 10 - 30% MVC, much less at 40%, and marked hyperaemia on relaxation from 20% MVC or more - implying metabolic debt. Adding low-amplitude alternating leg movements while holding the same overall load stationary, and therefore increasing only internal not external work, further elevates blood flow and VO(2) both during and after exercise. Femoral-vein lactate concentration is also higher after these movements. Speculations that unusually dynamic lower-body movements by elite sailors might assist hiking endurance are not supported by these findings. Nevertheless, afloat or ashore, capillary lactate concentrations hardly ever exceed 5 mmol . l(-1), even during the post-exercise surge - challenging assumptions that the quadriceps had been profoundly anaerobic while under load. On the contrary, it appears that aerobic metabolism contributes substantially, if not completely, to energy supply. A preliminary comparison of elite sailors with aerobic athletes suggests that isometric endurance at a given percentage MVC does not differ between the two groups, but the sailors have higher MVCs. In individuals not highly strength-trained, greater electromyogram activity immediately before capitulation than in an MVC performed while fresh indicates that physiological (not just volitional) limits have been reached. It is concluded that the literature and the outline of my recent work with colleagues support the view that the predominant physiological load during single-handed dinghy sailing is quasi-isometric in form and accounts for roughly half of the metabolic demand. Any more complete account of the physiology of hiking will require simultaneous on-water measurement of electromyographic, cardiovascular, and metabolic indicators in sailors extending from club to Gold Medal standard.  相似文献   

12.
This study examined differences in the oxygenation kinetics and strength and endurance characteristics of boulderers and lead sport climbers. Using near infrared spectroscopy, 13-boulderers, 10-lead climbers, and 10-controls completed assessments of oxidative capacity index and muscle oxygen consumption (m?O2) in the flexor digitorum profundus (FDP), and extensor digitorum communis (EDC). Additionally, forearm strength (maximal volitional contraction MVC), endurance (force–time integral FTI at 40% MVC), and forearm volume (FAV and ΔFAV) was assessed. MVC was significantly greater in boulderers compared to lead climbers (mean difference?=?9.6, 95% CI 5.2–14?kg). FDP and EDC oxidative capacity indexes were significantly greater (p?=?.041 and .013, respectively) in lead climbers and boulderers compared to controls (mean difference?=??1.166, 95% CI (?3.264 to 0.931?s) and mean difference?=??1.120, 95% CI (?3.316 to 1.075?s), respectively) with no differences between climbing disciplines. Climbers had a significantly greater FTI compared to controls (mean difference?=?2205, 95% CI=?1114–3296 and mean difference?=?1716, 95% CI?=?553–2880, respectively) but not between disciplines. There were no significant group differences in ΔFAV or m?O2. The greater MVC in boulderers may be due to neural adaptation and not hypertrophy. A greater oxidative capacity index in both climbing groups suggests that irrespective of climbing discipline, trainers, coaches, and practitioners should consider forearm specific aerobic training to aid performance.  相似文献   

13.
The aim of this study was to determine if the hypoxaemic stimulus generated by intense exercise results in the physiological response of increased erythropoietin production. Twenty athletes exercised for 3 min at 109 +/- 2.8% (mean +/- s) maximal oxygen consumption. Estimated oxyhaemoglobin saturation was measured by reflective probe pulse oximetry (Nellcor N200) and was validated against arterial oxyhaemoglobin saturation by CO-oximetry in eight athletes. Serum erythropoietin concentrations-as measured using the INCSTAR Epo-Trac radioimmunoassay-increased significantly by 28 +/- 9% at 24 h post-exercise in 11 participants, who also had an arterial oxyhaemoglobin saturation < or = 91% (P < 0.05). Decreased ferritin levels and increased reticulocyte counts were observed at 96 h post-exercise. However, no significant changes in erythropoietin levels were observed in nine non-desaturating athletes and eight non-exercise controls. Good agreement was shown between arterial oxyhaemoglobin saturation and percent estimated oxyhaemoglobin saturation (limits of agreement = -3.9 to 3.7%). In conclusion, short supramaximal exercise can induce both hypoxaemia and increased erythropoietin levels in well-trained individuals. The decline of arterial hypoxaemia levels below 91% during exercise appears to be necessary for the exercise-induced elevation of serum erythropoietin levels. Furthermore, reflective probe pulse oximetry was found to be a valid predictor of percent arterial oxyhaemoglobin saturation during supramaximal exercise when percent estimated oxyhaemoglobin saturation > or = 86%.  相似文献   

14.
In this study, we examined anabolic and catabolic hormone responses to a single endurance rowing training session in 12 male competitive single scull rowers. A work intensity eliciting a blood lactate concentration of 4 mmol(-1) was determined on a rowing ergometer during an endurance rowing training session lasting about 2 h (7891+/-761 s; distance covered 22.6+/-2.5 km; heart rate 136+/-7 beats x min(-1); intensity 77.4+/-3.8% of anaerobic threshold; mean +/- s). Venous blood samples were obtained before and after on-water rowing. Cortisol, testosterone and sex hormone binding globulin were measured and free testosterone and the free testosterone: cortisol ratio calculated. Blood lactate concentration did not change significantly during training (from 1.7+/-0.4 to 1.9+/-0.4 mmol x l(-1)); however, body mass was reduced (from 82.0+/-10.8 to 80.6+/-11.2 kg) and was related to the distance covered (r = -0.75). The concentrations of cortisol and testosterone did not change significantly during rowing or in the first 2 h of recovery. Free testosterone was reduced in the first 2 h of recovery, but no significant changes were observed in the free testosterone: cortisol ratio. Immediately after rowing, the concentrations of cortisol (r = 0.49) and free testosterone (r = -0.58) were related to the distance covered. Our findings indicate that a prolonged low-intensity training session results in a similar anabolic and catabolic hormone stimulus for trained rowers.  相似文献   

15.
We have previously shown that single-leg training results in improved endurance for exercise with the untrained leg (UTL) as well as for exercise with the trained leg (TL). The purpose of this study was to see whether the improved endurance of the untrained leg could be explained on the basis of changes in muscle metabolism. Exercise time to exhaustion at 80% of maximum oxygen uptake (VO2 max) was determined for each leg separately, pre- and post-training. Muscle metabolite concentrations were measured pre- and post-training in biopsy samples obtained immediately before this endurance test and at the pre-training point of exhaustion (END1). After six weeks of single-leg training endurance time was increased for both the UTL and the TL (UTL 34.0 +/- 16.4 min vs 97.9 +/- 26.3 min, P less than 0.01; TL 28.3 +/- 10.1 min vs 169.0 +/- 32.6 min, P less than 0.01). No changes in muscle metabolite concentrations were found in resting muscle. Training increased muscle ATP (P less than 0.05) and glycogen (P less than 0.01) concentrations and decreased muscle lactate concentration (P less than 0.05) in the TL at END1. No significant changes in muscle metabolite concentrations were found for the UTL. The improved endurance of the contralateral limb after single-leg training could not be explained on the basis of changes in muscle metabolism.  相似文献   

16.
The purpose of this study was to analyse the effect of regular exercise on spleen and peritoneal exudate reactive oxygen species (ROS) and lymphocyte proliferation by splenocytes. Twenty-four female BALB/c mice were randomly divided into trained (n = 12) and untrained (n = 12) groups. These two groups were further divided into mice that were studied at rest (trained/rest, n = 5; untrained/rest, n = 6) and immediately after a 2 h acute bout of exercise (trained/exercise, n = 6; untrained/exercise, n = 6). The animals were bred in the animal facility of the Yonsei University College of Medicine, where they were housed in a temperature- (22 - 24 degrees Celsius) and humidity- (50 - 60%) controlled environment, with a 12 h photoperiod, and provided with food and water ad libitum. The trained mice underwent 10 weeks of endurance swimming training (5 days per week) in water at 26 - 29 degrees Celsius for 60 min. Changes in body mass, proliferative activity and the production of reactive oxygen species from spleen lymphocytes and peritoneal exudate cells were determined. The splenic lymphocytes of the trained mice had much greater proliferative activity than those of the untrained mice (P < 0.05). Trained mice had lower ROS production in splenic lymphocytes and peritoneal exudate cells than untrained mice. In both groups, there was substantial inhibition of proliferative activity stimulated with medium, concanavalin A and lipopolysaccharide following the acute bout of exercise. This may have been caused by excessive ROS production following the acute exercise session.  相似文献   

17.
Abstract

The aim of this study was to determine whether endurance training in athletes induces airway inflammation and pulmonary function disorders. Respiratory pattern and function were analysed in ten healthy endurance runners at rest, during sub-maximal exercise, and during the recovery. Inflammatory cells and metabolites (histamine, interleukin-8, and leukotriene E4) were measured in sputum at rest and after exercise. The experiments were conducted on three different occasions (basic endurance training, pre-competitive and competitive periods). In spite of the absence of post-exercise spirometric changes and respiratory symptoms, airway cells counts and inflammatory markers changed significantly. At the beginning of the experiment, athletes' induced sputum showed an abundance of macrophages compared with neutrophils. We found a high percentage of neutrophils during the pre-competitive and competitive periods of the sport season (41% and 37%), a significant increase in macrophage counts during the pre-competitive period (51%), and a significant rise in total cells, interleukin-8, leukotriene E4, and histamine during the competitive period. In conclusion, one year's training increased markers of inflammation in the airways of endurance runners without symptoms or changes in pulmonary function, suggesting that airway inflammation is of insufficient magnitude to markedly impact lung function in healthy athletes.  相似文献   

18.
不同形式肌肉收缩时肌电参数变化特征及机制   总被引:1,自引:1,他引:0       下载免费PDF全文
研究目的:探讨动力性与静力性肌肉收缩时EMG各参数的变化特征及疲劳时各指标的差异,比较不同项目运动员肌肉收缩特征对EMG参数的影响及与该项目的关系。研究方法:27名受试者分为两组,第一组为赛艇运动员(组一),第二组为田径爆发性力量项目(跳跃、短跑)专选运动员(组二)。受试者以2/3Mvc做静力性持续等长收缩,动力性持续肌肉收缩则采用本人的MVC,同时记录EMG信号,分析IEMG、E/T值和MF。研究结果:持续静力性肌肉收缩时,随疲劳的发展赛艇运动员与田径运动员IEMG、E/T值均显著升高。但赛艇运动员从运动开始至80%时段一直保持平稳,此后迅速上升。静力性收缩时两组运动员随疲劳发展MF从高频向低频转移,但田径运动员频率下降速率要快于赛艇运动员。结论:赛艇运动训练促使大脑皮层动员运动单位工作更具有时间耐久性。快速、爆发式运动使疲劳时大脑皮层兴奋性下降更快,肌肉更易于疲劳。  相似文献   

19.
This study examined the effects of prior exercise on the lactate (Tlac) and ventilatory (Tvent) thresholds. Ten healthy male subjects volunteered to perform one-legged cycling. Muscle glycogen reduction was achieved by cycling at 75-85% of maximal heart rate for 60-75 min, and by a low carbohydrate diet. Pre- and post-exercise tests for measuring the thresholds employed a 3-min continuous protocol in 16 W increments. Muscle biopsies (n = 3) were taken from the vastus lateralis before the 'prior exercise' (PE) ride, the post-PE threshold test, and before testing the non-exercised (NE) leg. An i.v. catheter was used for serial blood lactate concentration determination during rest and the final 30 s of each progressive load. Ventilatory gas analyses were performed every 30 s. Biopsies showed that the PE and diet regimen reduced muscle glycogen in the PE leg (46.7%) and NE leg (36.4%). Venous blood lactate and respiratory exchange ratio (R) were reduced at Tlac and Tvent in both the PE and NE leg. The VO2 at a blood lactate concentration of 4 mmol l-1 was elevated in the PE leg at Tlac (2.89 versus 2.46 1 min-1), but not in the NE leg at Tlac. These results suggest that lactate concentration at Tlac and Tvent is reduced by endurance exercise performed 24 h prior to testing, and that the central circulation plays a major role in this response. Furthermore, since blood lactate is reduced at the thresholds by prior exercise, the use of a lactate level of 4 mmol l-1 as a criterion for Tlac should be interpreted cautiously.  相似文献   

20.
Abstract

Congestive heart failure (CHF) patients experience reduced muscle fatigue resistance and exercise capacity. The aim of this study was to assess whether skeletal muscle in CHF patients has a normal training response compared to healthy subjects. We compared the effect of one-legged knee extensor (1-KE) endurance training in CHF patients (n=10), patients with coronary artery disease (CAD, n=9) and healthy subjects (n=13). The training response was evaluated by comparing trained leg and control leg after the training period. The fall in peak torque during 75 maximal 1-KE isokinetic contractions revealed that CHF patients were less fatigue resistant than healthy subjects in the control leg, but not in the trained leg. Peak power and peak oxygen uptake during dynamic 1-KE exercise was ~10–16% higher in trained leg than control leg. This training response was not significant different between groups. Muscle biopsies of vastus lateralis showed that fibre type composition was not different between trained leg and control leg. Capillary density was 6.5% higher in trained leg than control leg when all groups were pooled. In conclusion, the more fatigable skeletal muscle of CHF patients responds equally to endurance training compared to skeletal muscle of CAD patients and healthy subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号