首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract

The aim of this study was to compare selected physiological variables and performance markers of soldiers from two “elite” units of the British Army. Ten soldiers from each of the two units were recruited for this study (n = 20). All participants completed three tests while carrying a 20 kg backpack load: (1) a maximal treadmill test using the Bruce protocol; (2) a 2 mile backpack run test specific to Unit A on a consistently flat tarmac road; and (3) a 29 km time-trial over hilly terrain typical of a mountainous area used by Unit B for performance assessment. Heart rate, maximal blood lactate concentration and performance (run time) were assessed during all three tests, with peak oxygen uptake also being measured during the maximal treadmill test. Measurements of anthropometry, isokinetic strength and mental toughness (MT48) were also recorded. There were no significant differences in terms of performance markers between the units (P > 0.05). Performance on the maximal treadmill test correlated with performance on the 2 mile backpack run test (r = ?0.57) and 29 km time-trial (r = ?0.66). Performance on the 2 mile backpack run test in turn correlated with 29 km time-trial performance (r = ?0.77), accounting for 59% of the variance. In conclusion, the maximal treadmill test and the 2 mile backpack run test are useful indicators of performance on the arduous hill march and could be employed in the screening and selection of potential recruits.  相似文献   

2.
It is common for the physiological working capacity of a triathlete when cycling and running to be assessed on two separate days. The aim of this study was to establish whether an incremental running test to exhaustion has a negative effect after a 5 h recovery from an incremental cycling test. Eight moderately trained triathletes (age, 26.2 +/- 3.4 years; body mass, 67.3 +/- 9.1 kg; VO2max when cycling, 59 +/- 13 ml x kg x min(-1); mean +/- s) completed an incremental running test 5 h after an incremental cycling test (fatigue) as well as an incremental running test without previous activity (control). Maximum running speed, maximal oxygen uptake (VO2max) and the lactate threshold were determined for each incremental running test and correlated with the average speed during a 5 km run, which was performed immediately after a 20 km cycling time-trial, as in a sprint triathlon. There were no significant differences in maximum running speed, VO2max or the lactate threshold in either incremental running test (control or fatigue). Furthermore, good agreement was found for each physiological variable in both the control and fatigue tests. For the fatigue test, there were significant correlations between the average speed during a 5 km run and both VO2max expressed in absolute terms (r = 0.83) and the lactate threshold (r = 0.88). However, maximum running speed correlated most strongly with the average speed during a 5 km run (r = 0.96). The results of this study indicate that, under controlled conditions, an incremental running test can be performed successfully 5 h after an incremental cycling test to exhaustion. Also, the maximum running speed achieved during an incremental running test is the variable that correlates most strongly with the average running speed during a 5 km run after a 20 km cycling time-trial in well-trained triathletes.  相似文献   

3.
Comparison of maximal anaerobic running tests on a treadmill and track   总被引:1,自引:0,他引:1  
To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol x l-1 (v10 mM) and 5 mmol x l(-1) (v5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 +/- 0.79 m x s(-1)) than on the treadmill (7.13 +/- 0.75 m x s(-1)), and sprint runners had significantly higher vmax, v10 mM, and peak blood lactate concentration than distance runners (P < 0.05). The Pearson product--moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v10 mM), 0.70 (v5 mM), and 0.78 (peak blood lactate concentration) (P < 0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with vmax in the treadmill (r = 0.90, P < 0.001) and track protocols (r = 0.92, P < 0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and vmax in the treadmill (r = 0.70, P < 0.01) and track protocols (r = 0.63, P < 0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

4.
The purpose of the present investigation was to examine the concurrent and construct validity of the three-mile (4.83 km) run as a field test of aerobic capacity. Subjects included 109 college-aged males whose three-mile run time (M = 1310.31 +/- 184.48 s) was measured. Fifty of the subjects were given a maximal treadmill stress test, and their peak oxygen consumption (VO2peak) (M = 54.23 +/- 7.08 ml.kg-1.min-1) was measured. The three-mile run was conducted on an outdoor 0.25 mile (0.425 km) track, and split times were recorded each 110 yds (100.32 m) for the first and last laps and total time was recorded for laps 2 through 11. The correlation coefficient between the run time and VO2peak was -.58, indicating only moderate concurrent validity for the run as a field test for aerobic capacity. A factor analysis conducted on the split time data revealed a three-factor structure of a stable pace phase, an initial sprint, and a final sprint with the stable pace factor accounting for most of the common factor variance (69%). The three-mile run time was used to discriminate successfully between two known groups of subjects in aerobic capacity. These data provide a degree of support for the construct validity of the three-mile run as a field test of aerobic capacity.  相似文献   

5.
Abstract

The purpose of the present investigation was to examine the concurrent and construct validity of the three-mile (4.83 km) run as afield test of aerobic capacity. Subjects included 109 college-aged males whose three-mile run time (M = 1310.31 ± 184.48 s) was measured. Fifty of the subjects were given a maximal treadmill stress test, and their peak oxygen consumption (VO2peak) (M = 54.23 ± 7.08 ml.kg?1.min?1) was measured. The three-mile run was conducted on an outdoor 0.25 mile (0.425 km) track, and split tunes were recorded each 110 yds (100.32 m) for the first and last laps and total time was recorded for laps 2 through 11. The correlation coefficient between the run time and VO2peak was -.58, indicating only moderate concurrent validity for the run as afield test for aerobic capacity. A factor analysis conducted on the split time data revealed a three-factor structure of a stable pace phase, an initial sprint, and a final sprint with the stable pace factor accounting for most of the common factor variance (69%). The three-mile run time was used to discriminate successfully between two known groups of subjects in aerobic capacity. These data provide a degree of support for the construct validity of the three-mile run as afield test of aerobic capacity.  相似文献   

6.
In this study, we assessed age-related changes in indoor 16.1-km cycling time-trial performance in 40 competitive male cyclists aged 25-63 years. Participants completed two tests: (1) a maximal ramped Kingcycle ergometer test, with maximal ramped minute power (RMPmax, W) recorded as the highest mean external power during any 60 s and maximal heart rate (HRmax, beats min(-1)) as the highest value during the test; and (2) an indoor Kingcycle 16.1-km time-trial with mean external power output (W), heart rate (beats min(-1)), and pedal cadence (rev min(-1)) recorded throughout the event. Results revealed age-related declines (P < 0.05) in absolute and relative time-trial external power output [(24 W (7.0%) per decade], heart rate [7 beats min(-1) (3.87%) per decade], and cadence [3 rev min(-1) (3.1%) per decade]. No relationships (P > 0.05) were observed for mean power output and heart rate recorded during the time-trial versus age when expressed relative to maximal ramped minute power and maximal heart rate respectively. Strong relationships (P < 0.05) were observed for maximal ramped minute power and time-trial power (r= 0.95) and for maximal heart rate and time-trial heart rate (r= 0.95). Our results show that indoor 16.1-km time-trial performance declines with age but relative exercise intensity (%RMPmax and %HRmax) does not change.  相似文献   

7.
Determinants of success during triathlon competition   总被引:1,自引:0,他引:1  
Eleven male triathletes were studied to determine the relationships between selected metabolic measurements and triathlon performance. Measurements of oxygen uptake (VO2), pulmonary ventilation (VE), and heart rate (HR) were made during submaximal and maximal 365.8 m freestyle swimming (FS), cycle ergometry (CE), and treadmill running (TR). Submaximal workloads were 1 m/s for swimming, 200 W for cycling, and 201.2 m/min for running. The mean VO2 max (l/min) was significantly (p less than .05) lower during FS (4.17) than CE (4.68) or TR (4.81). Swimming, cycling, and running performance times during the Muncie Endurathon (1.2 mile swim, 56 mile cycle, 13.1 mile run) were not significantly related to the event-specific VO2 max (ml/kg/min): -.49, -32 and -.55, respectively. The VO2 max expressed in l/min was found to be significantly (p less than .05) related to cycling time (r = -.70). A significant (p less than .05) relationship was observed between submaximal VO2 (ml/kg/min) during TM and run performance time (r = .64), whereas swimming and cycling performance times were significantly (p less than .05) related to submaximal VO2 max (l/min), r = .72 and .60, respectively. The percentage of VO2 (%VO2 max) used during the submaximal tests was significantly (p less than .05) related to swimming (.91), cycling (.78), and running (.86) performance times. Time spent running and cycling during triathlon competition was significantly (p less than .05) related to overall triathlon time, r = .97 and .81, respectively. However, swimming time was not significantly related (.30) to overall triathlon time. This study suggests that economy of effort is an important determinant of triathlon performance.  相似文献   

8.
This study was conducted to validate and evaluate the "Hit & Turn Tennis Test", an acoustically progressive on-court endurance test for tennis players. Ninety-eight competitive tennis players (53 males, 45 females) of different age groups participated in the study. For validation, the adult male players completed three Hit & Turn tests, one on a clay court and two on a carpet surface, a tennis-specific ball machine test and an incremental treadmill run in a randomized order. A stronger correlation between maximal performance (r = 0.81, P < 0.01) and maximal oxygen uptake (r = 0.96, P < 0.01) was observed between the Hit & Turn test and the ball machine test, than between the Hit & Turn test and the treadmill test. For test-retest, we found a significant correlation between maximal performance on the same (r = 0.83, P < 0.01) and on different surfaces (r = 0.74, P < 0.01). During test evaluation, maximal performance was higher in males than in females (P < 0.01) and increased by consecutive age group in boys (P < 0.01) but not in girls (P = 0.97). In conclusion, Hit & Turn maximum test performance can be recommended as a valid and reliable indicator for tennis-specific endurance.  相似文献   

9.
Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.  相似文献   

10.
The aims of this study were to determine if the primary time constant (tau) for oxygen uptake (VO2) at the onset of moderate-intensity treadmill exercise is related to endurance running performance, and to establish if tau could be considered a determinant of endurance running performance. Thirty-six endurance trained male runners performed a series of laboratory tests, on separate days, to determine maximal oxygen uptake (VO2max), the ventilatory threshold (VT) and running economy. In addition, runners completed six transitions from walking (4 km x h-1) to moderate-intensity running (80% VT) for the determination of the VO2 primary time constant and mean response time. During all tests, pulmonary gas-exchange was measured breath-by-breath. Endurance running performance was determined using a treadmill 5-km time-trial, after which runners were considered as combined performers (n=36) and, using a ranking system, high performers (n=10) and low performers (n=10). Relationships between tau and endurance running performance were quantified using correlation coefficients (r). Stepwise multiple regression was used to determine the primary predictor variables of endurance running performance in combined performers. Moderate correlations were observed between tau, mean response time and endurance running performance, but only for the combined performers (r=-0.55, P=0.001 and r=-0.50, P=0.002, respectively). The regression model for predicting 5-km performance did not include tau or mean response time. The velocity at VO2max was strongly correlated to endurance running performance in all groups (r=0.72 - 0.84, P < 0.01) and contributed substantially to the prediction of performance. In conclusion, the results suggest that despite their role in determining the oxygen deficit and having a moderate relationship with endurance running performance, neither tau nor mean response time is a primary determinant of endurance running performance.  相似文献   

11.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO2max = 64 +/- 2 ml x kg(-1) x min(-1); mean +/- s(x)) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group (P < or = 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 +/- 4% and 18 +/- 4% respectively; compared with placebo, P < or = 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 +/- 30 and 115 +/- 38 s (3.8 +/- 1.7% and 4.6 +/- 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

12.
The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake (VO(2max)), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute VO(2max) was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

13.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO 2max = 64 - 2 ml·kg -1 ·min -1 ; mean - sx ¥ ) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group ( P h 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 - 4% and 18 - 4% respectively; compared with placebo, P h 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 - 30 and 115 - 38 s (3.8 - 1.7% and 4.6 - 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

14.
The purpose of the present study was to determine the reliability of a 5km run test on a motorized treadmill. Over three consecutive weeks, 12 well-trained runners completed three 5km time trials on a treadmill following a standardized warm-up. Runners were partially-blinded to their running speed and distance covered. Total time to complete the run was recorded for analysis of reliability. The highest intraclass correlation coefficient between trials for 5km time trial (TT) time was .99 (90% confidence intervals [CI]; .96–1.00, very high), which occurred between trials 2 and 3. The lowest typical error of measurement (expressed as a coefficient of variation percentage [CV%] and as an absolute value in seconds) also occurred between trials 2 and 3, and was 1.0% and 10.9 seconds, respectively. The testing protocol performed on a motorized treadmill in the current study is reproducible in well-trained runners following a single trial, making it a reliable method for monitoring running performance.  相似文献   

15.
Effect of a carbohydrate mouthwash on running time-trial performance   总被引:1,自引:0,他引:1  
The aim of the present study was to determine the effect of a carbohydrate mouthwash on running time-trial performance. On two separate occasions, seven recreationally active males (VO2max 57.8 ml x kg(-1) x min(-1), s = 3.7) completed a preloaded (15 min at 65%VO2max) time-trial of 45 min in duration on a motorized treadmill. At 6-min intervals during the preload and time-trial, participants were given either a 6% maltodextrin, 3% lemon juice solution (carbohydrate trial) or a 3% lemon juice placebo mouthwash (placebo trial) in a double-blind, randomized crossover design. Heart rate, oxygen consumption (VO2), respiratory exchange ratio (RER), and ratings of perceived exertion (RPE) were measured during the preload, and blood glucose and lactate were measured before and after the preload and time-trial. There were no significant differences in distance covered between trials (carbohydrate: 9333 m, s = 988; placebo: 9309 m, s = 993). Furthermore, there were no significant between-trial differences in heart rate and running speed during the time-trial, or VO2, RER or RPE during the preload. Blood lactate and glucose increased as a result of the exercise protocol, with no between-trial differences. In conclusion, there was no positive effect of a carbohydrate mouthwash on running performance of approximately 1 h duration.  相似文献   

16.
The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; VO2peak 61 ml x kg(-1) x min(-1), s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70% VO2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

17.
The purpose of this study was to provide a more detailed analysis of performance in cross-country skiing by combining findings from a differential global positioning system (dGPS), metabolic gas measurements, speed in different sections of a ski-course and treadmill threshold data. Ten male skiers participated in a freestyle skiing field test (5.6 km), which was performed with dGPS and metabolic gas measurements. A treadmill running threshold test was also performed and the following parameters were derived: anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio = 1, onset of blood lactate accumulation and peak oxygen uptake (VO2peak). The combined dGPS and metabolic gas measurements made detailed analysis of performance possible. The strongest correlations between the treadmill data and final skiing field test time were for VO2peak (l x min(-1)), respiratory exchange ratio = 1 (l x min(-1)) and onset of blood lactate accumulation (l x min(-1)) (r = -0.644 to - 0.750). However, all treadmill test data displayed stronger associations with speed in different stretches of the course than with final time, which stresses the value of a detailed analysis of performance in cross-country skiing. Mean oxygen uptake (VO2) in a particular stretch in relation to speed in the same stretch displayed its strongest correlation coefficients in most stretches when VO2 was presented in units litres per minute, rather than when VO2 was normalized to body mass (ml x kg(-1) x min(-1) and ml x min(-1) x kg(-2/3)). This suggests that heavy cross-country skiers have an advantage over their lighter counterparts. In one steep uphill stretch, however, VO2 (ml x min(-1) x kg(-2/3)) displayed the strongest association with speed, suggesting that in steep uphill sections light skiers could have an advantage over heavier skiers.  相似文献   

18.
The multistage 20 metre shuttle run test for aerobic fitness   总被引:18,自引:2,他引:16  
A maximal multistage 20 m shuttle run test was designed to determine the maximal aerobic power of schoolchildren, healthy adults attending fitness class and athletes performing in sports with frequent stops and starts (e.g. basketball, fencing and so on). Subjects run back and forth on a 20 m course and must touch the 20 m line; at the same time a sound signal is emitted from a prerecorded tape. Frequency of the sound signals is increased 0.5 km h-1 each minute from a starting speed of 8.5 km h-1. When the subject can no longer follow the pace, the last stage number announced is used to predict maximal oxygen uptake (VO2max) (Y, ml kg-1 min-1) from the speed (X, km h-1) corresponding to that stage (speed = 8 + 0.5 stage no.) and age (A, year): Y = 31.025 + 3.238 X - 3.248A + 0.1536AX, r = 0.71 with 188 boys and girls aged 8-19 years. To obtain this regression, the test was performed individually. Right upon termination VO2 was measured with four 20 s samples and VO2max was estimated by retroextrapolating the O2 recovery curve at time zero of recovery. For adults, similar measurements indicated that the same equation could be used keeping age constant at 18 (r = 0.90, n = 77 men and women 18-50 years old). Test-retest reliability coefficients were 0.89 for children (139 boys and girls 6-16 years old) and 0.95 for adults (81 men and women, 20-45 years old).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Previous researchers have identified significant differences between laboratory and road cycling performances. To establish the ecological validity of laboratory time-trial cycling performances, the causes of such differences should be understood. Hence, the purpose of the present study was to quantify differences between laboratory- and road-based time-trial cycling and to establish to what extent body size [mass (m) and height (h)] may help to explain such differences. Twenty-three male competitive, but non-elite, cyclists completed two 25 mile time-trials, one in the laboratory using an air-braked ergometer (Kingcycle) and the other outdoors on a local road course over relatively flat terrain. Although laboratory speed was a reasonably strong predictor of road speed (R2 = 69.3%), a significant 4% difference (P < 0.001) in cycling speed was identified (laboratory vs. road speed: 40.4 +/- 3.02 vs. 38.7 +/- 3.55 km x h(-1); mean +/- s). When linear regression was used to predict these differences (Diff) in cycling speeds, the following equation was obtained: Diff (km x h(-1)) = 24.9 - 0.0969 x m - 10.7 x h, R2 = 52.1% and the standard deviation of residuals about the fitted regression line = 1.428 (km . h-1). The difference between road and laboratory cycling speeds (km x h(-1)) was found to be minimal for small individuals (mass = 65 kg and height = 1.738 m) but larger riders would appear to benefit from the fixed resistance in the laboratory compared with the progressively increasing drag due to increased body size that would be experienced in the field. This difference was found to be proportional to the cyclists' body surface area that we speculate might be associated with the cyclists' frontal surface area.  相似文献   

20.
The purpose of the present study was to assess fitness and running performance in a group of recreational runners (men, n = 18; women, n = 13). 'Fitness' was determined on the basis of their physiological and metabolic responses during maximal and submaximal exercise. There were strong correlations between VO2 max and treadmill running speeds equivalent to blood lactate concentrations of 2 mmol l-1 (V-2 mM) or 4 mmol l-1 (V-4 mM), 'relative running economy' and 5 km times (r = -0.84), but modest and non-significant correlations between muscle fibre composition and running performance. The results of the submaximal exercise tests suggested that the female runners were as well trained as the male runners. However, the men still recorded faster 5 km times (19.20 +/- 1.97 min vs 20.97 +/- 1.70 min; P less than 0.05). Therefore the of the present study suggest that the faster performance times recorded by the men were best explained by their higher VO2 max values, rather than their training status per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号