首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

2.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

3.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

4.
曲线y=f(x)在点x0的导数f′(x0)就是曲线在该点的切线的斜率,本文对用导数几何意义求切线引起的误解进行剖析.已知曲线C:y=2x-x3,求过点A(1,1)的切线方程.(2005年全国高考卷Ⅲ文科15题改编)误解:显然点A(1,1)在曲线C:y=2x-x3上,f′(x)=2-3x2∴f′(1)=-1∴过点(1,1)的切线方程为:y-1=-1(x-1),即y=-x 2解析:由于点A(1,1)恰好在曲线y=f(x)上,因此容易得到一条切线方程,即以点A为切点的切线.但本题求的是“经过点A的切线”,而不是“在点A处的切线”,因而不排除有其他切线经过A.因此本题切线应有两条,一条以点A为切点,另一条不以点A为切点但…  相似文献   

5.
2007年全国卷(Ⅱ)第22题:已知函数f(x)=x3-x,(Ⅰ)求曲线y=f(x)在点M(t,f(t))处的切线方程;(Ⅱ)设a>0,如果过点(a,b)可作曲线y=f(x)的3条切线,证明:-a相似文献   

6.
一、混淆曲线y=f(x)在点P处的切线与过点P的切线例1已知曲线y=f(x)=(1/3)x~3上一点P(2,8/3),求过点P的切线方程。错解:f′(x)=x~2.设过点P的切线的斜率为k,则k=f′(2)=4.  相似文献   

7.
现行新教材增加了导数知识,而利用导数求非常规曲线的切线在高考试卷中越来越多,应引起我们高度重视,下面谈谈利用导数解决切线问题的四种常见题型。题型一求过某一点的切线方程.此种题型分为点在曲线上和曲线外两种情况为基本题型.f′(x0)的几何意义就是曲线在点p(x0,f(x0))处  相似文献   

8.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

9.
导数的应用     
导数的应用在近几年高考中是必考内容之一,导数的应用主要体现在以下几个方面: 求曲线的切线方程;讨论函数的单调性和极值;证明等式或不等式.一、在点P(x0,f(x0))处的切线的斜率,也就是说,曲线y=f(x)在点P(x0,  相似文献   

10.
一、利用导数的几何意义解决有关切线的问题 利用导数求曲线上某点的切线方程,通常都是先求出该点的导数,即该点处切线的斜率,再由点斜式写出切线方程.若曲线上点x0处的导数不存在,由切线定义可知切线方程为x=x0.另外,"曲线上点P处的切线"与"过点P的曲线切线"是两个不同的概念,要注意区分,这是个易错点.  相似文献   

11.
教材(人教版)对于导数的几何意义是这样叙述的:“函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0)处的切线的斜率,也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f(x0)。相应地,切线方程为y-y0=f’(x0)(x-x0)。”因此,我们有了求切线方程的方法。  相似文献   

12.
正导数的几何意义就是曲线在该点处的切线斜率,下面笔者结合近几年高考例析导数的几何意义的多维应用.维度1抓住切点究两线题1(2013·天津文19选摘)已知函数f(x)=4x3+3x2-6x,求曲线y=f(x)在点(0,f(0))处的切线方程.  相似文献   

13.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

14.
<正>在近几年的高考中,对导数应用的考察频频出现,应引起我们的重视,下面从三个角度谈一下导数的应用:一、利用导数研究方程根的分布解决此种题型的方法是根据题意构造函数,画出草图,研究极值点,寻找解题途径。+例:已知函数f(x)=x3-x.(1)求曲线y=f(x)在点M(t,f(t))处的切线方程;(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a相似文献   

15.
一.有关导数的几何意义的错解剖析 例1,已知曲线f(x)=x^3-3x,过点A(0,16)作曲线f(x)的切线,求该切线的方程。  相似文献   

16.
正三次函数及其相关的问题,近年来在各级各类考查试卷中经常出现,其中大部分题型都可利用导数法来求解.本文介绍几种常见类型的求解方法,供参考.一、三次函数的切线例1已知函数f(x)=x3-x+2,试求过点P(1,2)的曲线y=f(x)的切线方程.解析设切点P0(x0,y0),由f'(x)=3x2-1,则f'(x0)=3x20-1,过点P0的方程为y-y0=f'(x0)(x-x0),即y-(x30-x0+2)=(3x20-1)(x-x0).又切线过点P(1,2),则2-(x30-x0+2)=(3x20-1)(1-x0),分解因式得(x0-1)2(2x0+1)=0,解之得x0=1或x0=-12.则f'(-12)=-14,f'(1)=2.故所求的切线方程为y-2=-14(x-1)和y-2=2(x-1).  相似文献   

17.
函数y=f(x)在点x0处的导数的几何意义就是曲线y=f(x)在点P(x0,y0)处的切线的斜率.导数的几何意义把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.因此,用导数解决与切线有关的问题将是高考命题的一个热点.下面分类解析导数几何  相似文献   

18.
近几年来,关于函数图像的切线问题,逐渐进入高考试卷,并在不断加大考查力度和与相关知识融合的力度,已经成为高考的热点.导数为这类问题的解决提供了新思路、新方法、新途径,拓宽了高考的命题空间.下同介绍高考切线问题的七种类型,并力求运用导数知识解决问题的主要思想方法,供复习参考.1求过一点的曲线的切线方程例1(2007年浙江省高考题)曲线y=x3-2x2-4x+2在点(1,-3)处的切线方程是.解显然点(1,-3)在曲线y=x3-2x2-4x+2上.因为y′=3x2-4x-4,所以y′│x=1=-5,因此所求切线方程为y+3=-5(x-1),即5x+y-2=0.例2(2006年全国高考题)过点(-1,0)作抛物线y=x2+x+1的切线,其中一条为().(A)2x+y+2=0(B)3x-y+3=0(C)x+y+1=0(D)x-y+1=0错解y′=2x+1,y′│x=-1=-1.故过点(-1,0)的抛物线的切线方程是y-0=-1(x+1),即x+y+1=0,所以选C.正解显然(-1,0)不在抛物线y=x2+x+1上.设切点坐标为P(x0,y0),则y0=x20+x0+1.过点P的切线方程是y-(x20+x0+1)=(2...  相似文献   

19.
找准切点求切线例1求曲线(fx)=x3-3x2+2x过原点的切线方程.错解由于原点在曲线上,所以原点为切点.而f′(x)=3x2-6x+2,所以f′(0)=2.所以y-0=2(x-0),即所求切线方程为y=2x.  相似文献   

20.
为探索二元甬数z=f(x,y)方向导数的几何特征,使用代数分析和矢量分析的方法研究函数z=f(x,y)的方向导数.对于由方程z=f(x,y)给出的曲面S上的曲线C:z=f(x,y)且y=y0+tanα·(x-x0),设L是过曲面S上(x0,y0,f(x0,y0))点曲线C的切线,θ是有向直线L与矢量→/AB的夹角.那么二元函数z=f(x,y)在(x0,Y0,f(x0,y0))点沿方向AB的方向导数就是tanθ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号