首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
要求已知点M(a,b)关于直线Ax+By+C=0的对称点N(x_0,y_0)的坐标,可由直线Ax+By+C=0是连接两点M(a,b)与N(x_0,y_0)的线段MN的垂直平分线而推得。由线段MN的中点((a+x_0)/2,(b+y_0)/2)在直线Ax+By+C=0上,有  相似文献   

2.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

3.
[定理1] 设曲线a:F(x,y)=0关于直线l:Ax+By+C=0的对称曲线是a’,则a’的方程为 F(x-(2A(Ax+By+C))/(A~2+B~2),y-(2B(Ax+By+C))/(A~2+B~2))=0 (1) 证:设a上任一点P(x_1,y_1)关于l的对称点是M(x,y).则PM的中点((x+x_1)/2,(y+y_1)/2)∈l,且PM⊥l.当A≠0且B≠0时,  相似文献   

4.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

5.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

6.
二元二次多项式 F(x,y)=Ax~2 2Bxy cy~2十2Dx 2Ey F 式中,A、B、C、D、E、F∈R 用矩阵表示,即为 定义1 称为二元二次多项式的配极形式。 配极形式F~*(X_0,y_0;x,y)有如下一些性质: (1)对称性 F~*(x_0,y_0;x,y)=F~*(x,y;x_0,y_0) (2)还原性 F~*(x_0,y_0;x_0,y_0)=F(x_0,y_0) 利用矩阵的运算性质,不难证明性质(1)和性质(2)。 (3)设a、b∈R,且a b=1,则  相似文献   

7.
思维是数学的心脏,问题是数学得以发展的源泉,下面我们对一个旧问题进行思考和探究.问题1 一直线 l 被两直线 l_1:4x+y+6=0和l_2:3x-5y-6=0截得的线段 MN 的中点 P 恰好是坐标原点,求直线 l 的方程.解法1:常规解法.设直线 l 与 l_1、l_2分别交于 M、N 两点,设点 M 坐标为(x_0,y_0),则点 N 的坐标为(-x_0,-y_0).  相似文献   

8.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

9.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

10.
三、圆锥曲线的焦点弦问题过焦点的直线与圆锥曲线相交,两个交点的线段叫焦点弦,与焦点弦有关的圆锥曲线问题常用定义(特别是第二定义中的焦半径公式)把问题转化.1.如果弦MN过椭圆的焦点F1,设M(x1,y1),N(x2,y2),则|MN|=a ex1 a ex2=2a e(x1 x2).【例6】设椭圆方程为ax22 by22=1  相似文献   

11.
定义1:如果直线L与圆锥曲线C相交于两个重合的点,则称L为圆锥曲线C的切线。 定义2:如果点M与圆锥曲线C的一个焦点F在圆锥曲线的同一部分,则称点M在圆锥 曲线C的内域。如果点M与圆锥曲线 C的焦点 F不在圆锥曲线 C的同一部分则称点 M在圆锥曲线C的外域。 设非退化圆锥曲线C的方程为F(x.y)=a_(11)x~2 2a_(12)xy a_(22)y~2 2a_(13)x 2a_(23)y a_(33)=0(1),为了研究圆锥曲线 C的切线的存在性光给出三个预备定理。本文略去其证明过程。 定理1:点M(X_0,y_0)为曲线c的内点的必要条件是F(x_0,y_0)·I_3>0;点 M(X_0,y_0)为曲线 C的外点的必要条件是 F(X_0,y_0)I_3<0。其中:  相似文献   

12.
<正>已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)/(a2)/(a2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)的  相似文献   

13.
求圆锥曲线弦的中点轨迹方程,在教科书和参考书中,都是用消去参数的方法来求出其轨迹方程的。这种方法计算冗长,容易搞错。用斜率公式求弦的中点轨迹方程,只要稍加计算,就能求出其轨迹方程,学生很容易掌握。用斜率公式还能解决一些有关弦的中点的其他问题。为了叙述方便,先介绍圆锥曲线弦的斜率和弦的中点坐标间的关系。如图1所示,AB是椭圆x~2/a~2 y~2/b~2=1的弦,而M是弦AB的中点。设A、B的坐标分别为(x_1,y_1),(x_2,y_2),弦AB的中点M的坐标为(x,y),  相似文献   

14.
设二次曲线F(x,y)=0(这里只研究缺x·y项的二次曲线)的动弦PQ的中点为M(x,y),构造P(x a,y b)、Q(x-a,y-b)(a≠0),当弦PQ存在斜率且记为k,k=b/a,于是点P、Q还可以以表示为P(x a,y ka)、Q(x-a,y-ka),那么|PQ|~2=4(a~2 b~2)=4a~2·(1 k~2),将P、Q坐标代入方程F(x,y)=0中,由坐标的对称性,可给解题带来极大的方使,我们来看下面几个问题。  相似文献   

15.
设△OAB的顶点坐标为O(0,0),A(x_1,y_1),B(x_2,y_2)(按逆时针方向排列),则x_1y_1-x_2y_1=|x_1 y_1 x_2 y_2|=|0 0 1 x_1 y_1 1 x_2 y_2 1|=2S_(△OAB)=OA·OBsin∠O.应用这个方法可以把几类条件代数极值问题化为几何极值问题来处理. 例1.设ax by=c(a,b,c∈R~ ,x,y∈R~-),求f(x,y)=mx~(1/2) ny~(1/2)(m,n>0)的极值. 解考虑点A((ax)~(1/2),-(by)~(1/2)),B(n/b~(1/2),m/a~(1/2)),∠AOB=θ,则  相似文献   

16.
<正>过双曲线的一个焦点和与虚半轴有关的y轴上的一点的直线,交双曲线于两点。这四点间存在许多比例关系,利用这些比例关系,可求相应的双曲线的离心率。题目(2015年湖南高考理)设F是双曲线C:(x~2)/(a~2)-(y~2)/(b~2)=1(a>0,b>0)的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为___。解:由题意,设F(c,0),虚轴的一个端点B(0,b),P(x_1,y_1),则由中点坐标公式,得  相似文献   

17.
一、下面一题的求解对不对?例1 过A(-1,0)作直线,求夹在双曲线x~2/4-y~2=1间线段中点P的轨迹方程.解:设P(x,y)为线段P_1P_2的中点,端点P_1(x_1,y_1),P_2(x_2,y_2),按照题设条件可得到下列关  相似文献   

18.
本文给出圆锥曲线各种变动弦中点轨迹方程的统一求法,这种求法程序简单,便于记忆和应用。在此基础上就几类常见的弦中点轨迹问题分别举例加以说明。 一、一般圆锥曲线变动弦中点轨迹的统一方程及求法 引理:设圆锥曲线C的方程为:F(x,y)=Ax~2 Bxy Cy 2 Dx Ey F=0(1)记Fx(x,y)=2Ax By D,F'y(x,y)=Bx 2Cy E假如C以己知点M(Xo,yo)为中点的弦存在,则该弦所在直线的方程为:  相似文献   

19.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

20.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号