首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study assessed the influence of a reflective, explicit, activity‐based approach to nature of science (NOS) instruction undertaken in the context of an elementary science methods course on preservice teachers' views of some aspects of NOS. These aspects included the empirical, tentative, subjective (theory‐laden), imaginative and creative, and social and cultural NOS. Two additional aspects were the distinction between observation and inference, and the functions of and relationship between scientific theories and laws. Participants were 25 undergraduate and 25 graduate preservice elementary teachers enrolled in two sections of the investigated course. An open‐ended NOS questionnaire coupled with individual interviews was used to assess participants' NOS views before and at the conclusion of the course. The majority of participants held naive views of the target NOS aspects at the beginning of the study. During the first week of class, participants were engaged in specially designed activities that were coupled with explicit NOS instruction. Throughout the remainder of the course, participants were provided with structured opportunities to reflect on their views of the target NOS aspects. Postinstruction assessments indicated that participants made substantial gains in their views of some of the target NOS aspects. Less substantial gains were evident in the case of the subjective, and social and cultural NOS. The results of the present study support the effectiveness of explicit, reflective NOS instruction. Such instruction, nonetheless, might be rendered more effective when integrated within a conceptual change approach. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 295–317, 2000.  相似文献   

2.
This study (a) assessed the influence of an integrated nature of science (NOS) instructional intervention on inservice secondary science teachers' understandings, retention of those understandings, and their NOS instructional planning and practices; and (b) examined factors that mediated the translation of teachers' NOS understandings into practice. Nineteen teachers participated in an intensive, 6-week NOS course, which concluded with teachers developing plans to address NOS in their classrooms. Next, 6 participants were observed as they implemented their instructional plans. Data sources included pretest, posttest, and delayed-test NOS assessments, classroom observations, and several teacher-generated artifacts. The NOS course was effective in helping teachers develop informed NOS conceptions and retain those understandings 5 months after its conclusion. Teachers met with challenges and successes as they attempted to address NOS instructionally. The translation of NOS conceptions into practice was primarily mediated by the very nature of teachers' newly acquired NOS understandings, which were situated within the science contents, contexts, and experiences in which they were developed (i.e. the NOS course); thus, limiting participants' abilities to transfer their understandings into novel contexts and contents. The results helped build a model of the sources of science teachers' pedagogical content knowledge for teaching about NOS in content-rich contexts.  相似文献   

3.
The nature of science (NOS) has become a central goal of science education in many countries. This study refers to a developmental work research program, in which four fifth-grade elementary in-service teachers participated. It aimed to improve their understandings of NOS and their abilities to teach it effectively to their students. The 1-year-long, 2012–2013, program consisted of a series of activities to support teachers to develop their pedagogical content knowledge of NOS. In order to accomplish our goal, we enabled teacher-researchers to analyze their own discourse practices and to trace evidence of effective NOS teaching. Many studies indicate the importance of examining teachers’ discussions about science in the classroom, since it is teachers’ understanding of NOS reflected in these discussions that will have a vital impact on students’ learning. Our proposal is based on the assumption that reflecting on the ways people form meanings enables us to examine and seek alternative ways to communicate aspects of NOS during science lessons. The analysis of discourse data, which has been carried out with the teacher-researchers’ active participation, indicated that initially only a few aspects of NOS were implicitly incorporated in teacher-researchers’ instruction. As the program evolved, all teacher-researchers presented more informed views on targeted NOS aspects. On the whole, our discourse-focused professional development program with its participatory, explicit, and reflective character indicated the importance of involving teacher-researchers in analyzing their own talk. It is this involvement that results in obtaining a valuable awareness of aspects concerning pedagogical content knowledge of NOS teaching.  相似文献   

4.

The effective continuing professional development (CPD) programs primarily aim to have an impact on teachers’ knowledge bases, beliefs, and views and their classroom practices, which rationally lead most of the researchers to investigate those changes on teachers primarily. Although neglected, the interrelationship between CPD programs and students is considered complex, and CPDs ultimately aim to have an impact on students’ views, too. Therefore, the purpose of this study is to survey the changes of middle school students’ views of the nature of science (NOS) by providing a large-scale CPD to their teachers and, in other words, identify the impact of CPD on ultimate beneficiaries, namely students. In this study, 10 science teachers’ data and, in the first phase, 481 and, in the second phase, 422 students’ data and the changes in their NOS views were analyzed. Results showed that the students’ and teachers’ NOS views changed positively. For the impact of teachers on the students’ views, the teachers’ prior NOS knowledge, years of experience, and the number of implemented activities were found to be the influential factors for the transmission of NOS views.

  相似文献   

5.
This study aimed to assess the influence of a philosophy of science (POS) course on science teachers’ views of nature of science (NOS), perceptions of teaching about NOS, and instructional planning related to NOS. Participants were 56 undergraduate and graduate preservice secondary science teachers enrolled in a two science‐methods course sequence, in which participants received explicit, reflective NOS instruction. Ten of these participants were also enrolled in a graduate survey POS course. The Views of Nature of Science Questionnaire — Form C coupled with individual interviews was used to assess participants’ NOS views at the beginning and conclusion of the study. Participants’ lesson plans and NOS‐specific reflection papers were analysed to assess the impact of the POS course on their instructional planning related to, and perceptions of teaching about, NOS. Results indicated that, compared with participants enrolled in the methods courses, the POS course participants developed deeper, more coherent understandings of NOS. Substantially more of these latter participants planned explicit instructional sequences to teach about NOS. Additionally, the POS course participants’ discourse regarding NOS progressed from a preoccupation with the technical, to a concern with the practical, and, finally, to a focus on the emancipatory. Their views of teaching about NOS in their future classrooms went beyond the customary discourse of whether pre‐college students should or could be taught about NOS, to contemplating changes they needed to bring about in their own teaching behaviour and language to achieve consistency with their newly acquired NOS understandings.  相似文献   

6.
This study explored changes in preservice teachers’ (PSTs) nature of science pedagogical (NOSP) views and nature of science (NOS) rationales using pre- and post-course written responses as well as interview data. Through systematic analysis, themes were generated and compared to the NOS literature. Comparisons between pre- and post-course data demonstrate improved and deepened NOS views, NOSP views that are more aligned with NOS literature, and a greater number of rationales for including NOS. All participants were enrolled in the “Inquiry and Natures of Science, Technology, and Engineering” (INSTE) course. However, six participants were enrolled in INSTE as their first course in which NOS and NOSP were addressed. The other six participants were enrolled in INSTE as their second course in which NOS and NOSP were addressed, with science methods as their first course in which NOS and NOSP were addressed. By comparing participants enrolled in INSTE as their first course to those enrolled in INSTE as their second course, we observed that NOS understanding seemed to develop in a first experience alongside some NOS rationales, but NOSP views lagged for participants in INSTE as their first course. Participants enrolled in INSTE as their second course developed more robust and literature-aligned NOSP views and more multifaceted NOS rationales. Therefore, this study bolsters arguments that teachers need to receive extended NOS and NOSP instruction.  相似文献   

7.
8.
Establishing literacy in science is often linked to building knowledge about the Nature of Science (NOS). This paper describes and evaluates an inservice program designed to build elementary teachers’ understanding of NOS and an awareness of how NOS impacts science classroom instruction. Data sources consisted of surveys, action research plan documentation and classroom observations. Program participants tended to demonstrate some gains in understanding more about NOS and they linked positive experiences in the program to the explicit and activity-based NOS instruction provided. Yet, participation in the professional development project might not have been equally beneficial for all teachers. The understanding of NOS may have been restricted to certain NOS aspects, and the demonstration of the participants’ understanding of NOS may have been short-lived with a somewhat limited impact on sustainable, long-term NOS-based classroom instruction. Implications for designing NOS related professional development programs and suggestions for improvements to further develop teacher understanding of NOS are discussed.  相似文献   

9.
10.
Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators’ conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to prospective science teachers. Among a total of twenty NOS elements considered by the Chinese science teacher educators to be important ideas to be taught, five were suggested by no less than a half of the educators. They are (1) empirical basis of scientific investigation, (2) logics in scientific investigation, (3) general process of scientific investigation, (4) progressive nature of scientific knowledge, and (5) realist views of mind and natural world. This paper discusses the influence of Marxism, a special socio-cultural factor in China, on Chinese science teacher educators’ conceptions of NOS content to be taught to prospective science teachers. We argue the importance of considering ideological traditions (mainly those in general philosophy and religion) when interpreting views of NOS or its content to be taught in different countries and regions and understanding students’ conceptual ecology of learning NOS.  相似文献   

11.
This study explored the development of a community of learners through a professional development program to improve teachers' views of nature of science (NOS) and teaching practice. The Views of Nature of Science questionnaire and interviews were used to assess teachers' conceptions of NOS three times over the course of the study. Notes and videotapes taken during workshops and classroom observations were used to track influence of the community of learners on classroom practice. The community of practice (CoP) was fostered through an intensive summer workshop, monthly school site workshops, and classroom support to aid teachers in incorporating new techniques and reflecting upon their learning and practice. We found that teachers became aware of their changes in views about NOS once they struggled with the concepts in their own teaching and discussed their struggles within the professional development community. The CoP on its own was not sufficient to change teacher's practice or knowledge, but it created a well‐supported environment that facilitated teacher change when paired with NOS modeling and explicit reflection. Cases of three teachers are used to illustrate changes in views and teaching practice common to the teachers in this study. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 46: 1090–1113, 2009  相似文献   

12.
The major science education reform documents emphasize the need for K-12 students to have a robust understanding of nature of science (NOS), and inservice teachers consequently need to develop their NOS teaching repertoires. This study investigated the extent to which science teachers were willing to adopt new strategies and activities for teaching NOS in their classrooms. The participants were 36 elementary, middle, and high school teachers who were completing a year-long physical science professional development (PD) that included NOS instruction. Data sources consisted of surveys (teachers’ NOS views, teaching practices), collected work, and responses to post-PD follow-up questions. The professional development course was successful in that teachers incorporated many of these strategies and activities into their own practice. This study also endeavored to identify factors that facilitated the adoption of these new approaches to teaching NOS. While personal characteristics such as pre- or post-PD NOS understandings, NOS gains, and grade level taught were not related to the number of NOS activities incorporated, teachers from suburban and rural schools were significantly more likely to implement NOS activities.  相似文献   

13.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

14.
The study investigated the relationship between instructional context (integrated and non‐integrated) that explicitly teaches about nature of science (NOS) and students’ view of NOS across different disciplines. Participants were three teachers and their students, which comprised six classes of 89 ninth‐graders and 40 10th/11th‐graders. Each teacher taught two intact sections of the same grade level within a specific science discipline. The treatment for all groups involved teaching a 5–6 week unit that included the science content and NOS. The two intact groups learned about same content; the only difference was the context of NOS instruction (integrated or non‐integrated). An open‐ended questionnaire, followed by interviews, was used to assess change in participants’ views. Results showed improvement in students’ NOS views regardless of whether NOS instruction was embedded within the content. Therefore, it was not possible to make claims about whether one instructional context is more effective than another in general terms.  相似文献   

15.
In this article, we present the results from a mixed-methods research study aimed to document indoor and outdoor fifth grade science experiences in one school in the USA in the context of accountability and standardized testing. We used quantitative measures to explore students’ science knowledge, environmental attitudes, and outdoor comfort levels, and via qualitative measures, we examined views on science education and environmental issues from multiple sources, including the school’s principal, teachers, and students. Students’ science knowledge in each of the four objectives specified for grade 5 significantly improved during the school year. Qualitative data collected through interviews and observations found limited impressions of outdoor science. Findings revealed that, despite best intentions and a school culture that supported outdoor learning, it was very difficult in practice for teachers to supplement their classroom science instruction with outdoor activities. They felt constrained by time and heavy content demands and decided that the most efficient way of delivering science instruction was through traditional methods. Researchers discuss potentials and obstacles for the science community to consider in supporting teachers and preparing elementary school teachers to provide students with authentic experiential learning opportunities. We further confront teachers’ and students’ perceptions that science is always best and most efficiently learned inside the classroom through traditional text-driven instruction.  相似文献   

16.
The purpose of this study was to explore the effect of the inquiry-based and explicit–reflective laboratory instruction on preservice science teachers’ (PSTs) conceptions of the nature of science (NOS) aspects. This study was carried out during the Laboratory Application in Science II course. All 52 preservice elementary science teachers enrolled in the course consented to participate in the study; 37 were female and 15 were male, with a mean age of 22.8 years. All had the same science major background, and all of them were juniors. The course provided meaningful and practical inquiry-based experiences, as well as explicit and reflective instruction about NOS. Each week, a specific NOS aspect was targeted related to the inquiry-based laboratory investigation. The design of the study was qualitative and exploratory in nature. At the beginning of the study, the Views of Nature of Science Questionnaire Version B open-ended questionnaire was applied to explore PSTs’ NOS views. At the end of the semester, the same questionnaire was conducted to determine the impact of the explicit–reflective and inquiry-based laboratory instruction. The results showed that many PSTs improved their views of NOS in each element, although to different degrees.  相似文献   

17.
18.
This investigation assessed the impact of situating explicit nature of science (NOS) instruction within the issues surrounding global climate change and global warming (GCC/GW). Participants in the study were 15 preservice elementary teachers enrolled in a science methods course. The instructional intervention included explicit NOS instruction combined with explicit GCC/GW instruction situated within the normal elementary science methods curriculum. Participants’ conceptions of NOS and GCC/GW were assessed with pre- and postadministrations of open-ended questionnaires and interviews. Results indicated that participants’ conceptions of NOS and GCC/GW improved over the course of the semester. Furthermore, participants were able to apply their conceptions to decision making about socioscientific issues. The results provide support for context-based NOS instruction in an elementary science methods course.  相似文献   

19.
20.
Numerous empirical studies have provided evidence of the effectiveness of an explicit and reflective approach to the learning of issues associated with the nature of science (NOS) (c.f. Abd-El-Khalick and Lederman in J Res Sci Teach 37(10):1057–1095, 2000). This essay reports the results of a mixed-methods association study involving 130 preservice teachers during the course of a three class unit based upon the history of science using such an approach. Within the unit the phenomenon of industrial melanism was presented as a puzzle for students to solve. Students were explicitly asked to reflect upon several NOS issues as they developed and tested their own explanations for the “mystery phenomenon”. NOS views of all participants were characterized by means of surveys and follow-up interviews with a subsample of 17 participants, using a modified version of the VNOS protocol (c.f. Lederman et al. in J Res Sci Teach 39(6):497–521, 2002). An analysis of the survey results informed by the interview data suggests NOS views became more sophisticated for some issues, e.g., whether scientific knowledge requires experimentation; but not others, e.g., why scientists experiment. An examination of the interview data informed by our experiences with the unit provides insight into why the unit may have been more effective with regard to some issues than others. This includes evidence that greater sophistication of some NOS issues was fostered by the use of multiple, contextualized examples. The essay concludes with a discussion of limitations, pedagogical implications, and avenues for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号